CDH下配置Flume进行配置传输日志文件(尚硅谷版)

CDH下配置Flume进行日志采集配置

说明:许多企业目前都在使用CDH进行大数据开发,CDH具有方便,高效,一键配置,方便管理和搭建大数据组件的特点,所以下面说一下尚硅谷的Flume配合Kafka进行日志文件的采集。

架构图

下图蓝框内为采集架构图,由架构图得到数据是以Flume --> kafka --> Flume --> HDFS进行采集的,可以看到使用了两次Flume
CDH下配置Flume进行配置传输日志文件(尚硅谷版)_第1张图片

第一层Flume架构及配置

这一块的source是TAILDIR,channel是memory,sink是kafka,这一块用到了拦截器,拦截器的作用是将日志文件分为两个部分,一个部分就是启动日志start,一个是时间日志event,通过拦截器的筛选则会将日志文件筛选出这两部分存放在kafka的topic,前提要将kafka的topic建立好,topic_start,topic_event,此部分省略
注:flume采用的压缩为LZO,不知道如何让在CDH下配置LZO的请看我的这篇文章:CDH下LZO的配置
CDH下配置Flume进行配置传输日志文件(尚硅谷版)_第2张图片
CDH下配置Flume进行配置传输日志文件(尚硅谷版)_第3张图片
CDH下配置Flume进行配置传输日志文件(尚硅谷版)_第4张图片
问:Flume的代码一定要这样放在CDH中吗
答:当然不是,这样写的好处是CDH启动后就会一直监测日志文件,只要生成日志文件就会进行传输,不这样写,按照普通配置文件也可以使用,flume-ng agent -c conf/ -n a1 -f /配置路径/f1.conf -Dflume.root.logger=DEBUG,consol 拦截器放在/opt/cloudera/parcels/CDH/lib/flume-ng/lib/

拦截器代码如下,jar包下载链接在下,可以配合Flume直接用

拦截器代码

本项目中自定义了两个拦截器,分别是:ETL拦截器、日志类型区分拦截器。
ETL拦截器主要用于,过滤时间戳不合法和Json数据不完整的日志
日志类型区分拦截器主要用于,将启动日志和事件日志区分开来,方便发往Kafka的不同Topic。
1)创建Maven工程flume-interceptor
2)创建包名:com.atguigu.flume.interceptor
3)在pom.xml文件中添加如下配置

<dependencies>
    <dependency>
        <groupId>org.apache.flume</groupId>
        <artifactId>flume-ng-core</artifactId>
        <version>1.7.0</version>
    </dependency>
</dependencies>

<build>
    <plugins>
        <plugin>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>2.3.2</version>
            <configuration>
                <source>1.8</source>
                <target>1.8</target>
            </configuration>
        </plugin>
        <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

4)在com.atguigu.flume.interceptor包下创建LogETLInterceptor类名
Flume ETL拦截器LogETLInterceptor

package com.atguigu.flume.interceptor;

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;

public class LogETLInterceptor implements Interceptor {

    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {

        // 1 获取数据
        byte[] body = event.getBody();
        String log = new String(body, Charset.forName("UTF-8"));

        // 2 判断数据类型并向Header中赋值
        if (log.contains("start")) {
            if (LogUtils.validateStart(log)){
                return event;
            }
        }else {
            if (LogUtils.validateEvent(log)){
                return event;
            }
        }

        // 3 返回校验结果
        return null;
    }

    @Override
    public List<Event> intercept(List<Event> events) {

        ArrayList<Event> interceptors = new ArrayList<>();

        for (Event event : events) {
            Event intercept1 = intercept(event);

            if (intercept1 != null){
                interceptors.add(intercept1);
            }
        }

        return interceptors;
    }

    @Override
    public void close() {

    }

    public static class Builder implements Interceptor.Builder{

        @Override
        public Interceptor build() {
            return new LogETLInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }
}

4)Flume日志过滤工具类

package com.atguigu.flume.interceptor;
import org.apache.commons.lang.math.NumberUtils;

public class LogUtils {

    public static boolean validateEvent(String log) {
        // 服务器时间 | json
        // 1549696569054 | {"cm":{"ln":"-89.2","sv":"V2.0.4","os":"8.2.0","g":"[email protected]","nw":"4G","l":"en","vc":"18","hw":"1080*1920","ar":"MX","uid":"u8678","t":"1549679122062","la":"-27.4","md":"sumsung-12","vn":"1.1.3","ba":"Sumsung","sr":"Y"},"ap":"weather","et":[]}

        // 1 切割
        String[] logContents = log.split("\\|");

        // 2 校验
        if(logContents.length != 2){
            return false;
        }

        //3 校验服务器时间
        if (logContents[0].length()!=13 || !NumberUtils.isDigits(logContents[0])){
            return false;
        }

        // 4 校验json
        if (!logContents[1].trim().startsWith("{") || !logContents[1].trim().endsWith("}")){
            return false;
        }

        return true;
    }

    public static boolean validateStart(String log) {

        if (log == null){
            return false;
        }

        // 校验json
        if (!log.trim().startsWith("{") || !log.trim().endsWith("}")){
            return false;
        }

        return true;
    }
}

5)Flume日志类型区分拦截器LogTypeInterceptor

package com.atguigu.flume.interceptor;

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class LogTypeInterceptor implements Interceptor {
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {

        // 区分日志类型:   body  header
        // 1 获取body数据
        byte[] body = event.getBody();
        String log = new String(body, Charset.forName("UTF-8"));

        // 2 获取header
        Map<String, String> headers = event.getHeaders();

        // 3 判断数据类型并向Header中赋值
        if (log.contains("start")) {
            headers.put("topic","topic_start");
        }else {
            headers.put("topic","topic_event");
        }

        return event;
    }

    @Override
    public List<Event> intercept(List<Event> events) {

        ArrayList<Event> interceptors = new ArrayList<>();

        for (Event event : events) {
            Event intercept1 = intercept(event);

            interceptors.add(intercept1);
        }

        return interceptors;
    }

    @Override
    public void close() {

    }

    public static class Builder implements  Interceptor.Builder{

        @Override
        public Interceptor build() {
            return new LogTypeInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }
}

6)jar包链接 提取码:6wz8

Flume1代码

a1.sources=r1
a1.channels=c1 c2 
a1.sinks=k1 k2 

# configure source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /tmp/logs/app.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1 c2

#interceptor
a1.sources.r1.interceptors = i1 i2
a1.sources.r1.interceptors.i1.type = com.atguigu.flume.interceptor.LogETLInterceptor$Builder
a1.sources.r1.interceptors.i2.type = com.atguigu.flume.interceptor.LogTypeInterceptor$Builder

# selector
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = topic
a1.sources.r1.selector.mapping.topic_start = c1
a1.sources.r1.selector.mapping.topic_event = c2

# configure channel
a1.channels.c1.type = memory
a1.channels.c1.capacity=10000
a1.channels.c1.byteCapacityBufferPercentage=20

a1.channels.c2.type = memory
a1.channels.c2.capacity=10000
a1.channels.c2.byteCapacityBufferPercentage=20

# configure sink
# start-sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = topic_start
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.flumeBatchSize = 2000
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.channel = c1

# event-sink
a1.sinks.k2.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k2.kafka.topic = topic_event
a1.sinks.k2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k2.kafka.flumeBatchSize = 2000
a1.sinks.k2.kafka.producer.acks = 1
a1.sinks.k2.channel = c2

Flume2代码(放在第二个flume的节点上)

Flume2架构图
CDH下配置Flume进行配置传输日志文件(尚硅谷版)_第5张图片

## 组件
a1.sources=r1 r2
a1.channels=c1 c2
a1.sinks=k1 k2

## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.topics=topic_start

## source2
a1.sources.r2.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r2.batchSize = 5000
a1.sources.r2.batchDurationMillis = 2000
a1.sources.r2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r2.kafka.topics=topic_event

## channel1
a1.channels.c1.type=memory
a1.channels.c1.capacity=100000
a1.channels.c1.transactionCapacity=10000

## channel2
a1.channels.c2.type=memory
a1.channels.c2.capacity=100000
a1.channels.c2.transactionCapacity=10000

## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.proxyUser=hive
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_start/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = logstart-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second

##sink2
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.proxyUser=hive
a1.sinks.k2.hdfs.path = /origin_data/gmall/log/topic_event/%Y-%m-%d
a1.sinks.k2.hdfs.filePrefix = logevent-
a1.sinks.k2.hdfs.round = true
a1.sinks.k2.hdfs.roundValue = 10
a1.sinks.k2.hdfs.roundUnit = second

## 不要产生大量小文件
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0

a1.sinks.k2.hdfs.rollInterval = 10
a1.sinks.k2.hdfs.rollSize = 134217728
a1.sinks.k2.hdfs.rollCount = 0

## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream 
a1.sinks.k2.hdfs.fileType = CompressedStream 

a1.sinks.k1.hdfs.codeC = lzop
a1.sinks.k2.hdfs.codeC = lzop

## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

a1.sources.r2.channels = c2
a1.sinks.k2.channel= c2

在HDFS上进行文件创建:

udo -u hdfs hadoop fs -mkdir /origin_data
sudo -u hdfs hadoop fs -chown hive:hive /origin_data

体贴的我还给你们把日志生成jar包提供了,点个赞可以不~
链接:https://pan.baidu.com/s/1Lf7KTF6tvGmmZdr0Hbfv6w
提取码:jjgu
复制这段内容后打开百度网盘手机App,操作更方便哦–来自百度网盘超级会员V3的分享

重启Flume,然后再生成日志文件就可以看到文件出现了,注意修改你的ip地址就可以了
CDH下配置Flume进行配置传输日志文件(尚硅谷版)_第6张图片

你可能感兴趣的:(Flume,CDH下flume读取文件,flume,hadoop,hdfs)