数据结构(时间复杂度)

什么是时间复杂度,算法中某个函数有n次基本操作重复执行,用T(n)表示,现在有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。通俗一点讲,其实所谓的时间复杂度,就是找了一个同样曲线类型的函数f(n)来表示这个算法的在n不断变大时的趋势 。当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

计算时间复杂度的方法:

  1. 用常数1代替运行时间中的所有加法常数
  2. 修改后的运行次数函数中,只保留最高阶项
  3. 去除最高阶项的系数

按数量级递增排列,常见的时间复杂度有:

随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

1. 常数阶

这种与问题规模的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。

int sum = 0, n = 100;       /*执行一次*/
sum = (1 + n) * n / 2;      /*执行一次*/
printf("%d",sum);           /*执行一次*/

2. 线性阶

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。

下面这段代码,它的循环的时间复杂度为O(n), 因为循环体中的代码须要执行n次。

int i;      
for(i = 0; i < n; i++){
    /*时间复杂度为O(1)的程序步骤序列*/
}

3. 对数阶

int count = 1;      
while (count < n){
   count = count * 2;
  /*时间复杂度为O(1)的程序步骤序列*/
}
由于每次count乘以2之后,就距离n更近了一分。 也就是说,有多少个2相乘后大于n,则会退出循环。 由2^x=n 得到x=log2(n)。 所以这个循环的时间复杂度为O(log2(n))。

4. 平方阶

这段代码的时间复杂度为O(n^2)。

int i, j;      
for(i = 0; i < n; i++){
    for(j = 0; j < n; j++){
        /*时间复杂度为O(1)的程序步骤序列*/
    }

循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。


int i, j;      
for(i = 0; i < n; i++){
    for(j = i; j < n; j++){   /*注意j = i而不是0*/
        /*时间复杂度为O(1)的程序步骤序列*/
    }
}

由于当i=0时,内循环执行了n次,当i = 1时,执行了n-1次,……当i=n-1时,执行了1次。所以总的执行次数为:


根据时间复杂度的算法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留时(n^2)/2; 第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n^2)。

5. 立方阶
int i, j;      
for(i = 1; i < n; i++)
    for(j = 1; j < n; j++)
        for(j = 1; j < n; j++){
            /*时间复杂度为O(1)的程序步骤序列*/
 
}

最坏时间复杂度和平均时间复杂度

  1. 最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。
    这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。
  2. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。设每种情况的出现的概率为pi,平均时间复杂度则为sum(pi*f(n))

你可能感兴趣的:(数据结构(时间复杂度))