矩阵求导知识——详细笔记

矩阵求导知识——详细笔记


文章目录

  • 矩阵求导知识——详细笔记
  • 前言
  • 一、矩阵对矩阵求导
  • 二、矩阵对标量或标量对矩阵求导
    • 1.矩阵Y对标量x求导
    • 2.标量y对列向量X求导:
    • 3.行向量Y'对列向量X求导:
    • 4.列向量Y对行向量X’求导:
    • 5.向量积对列向量X求导运算法则:
    • 6.矩阵Y对列向量X求导:
    • 7.矩阵积对列向量求导法则:
    • 8.标量y对矩阵X的导数:
  • 总结


前言

本文以笔记的形式记录了矩阵求导的相关知识。如果仅关心矩阵与矩阵相乘情况下的求导,只看第一部分即可,每部分开头位置会给出结论性公式。


一、矩阵对矩阵求导

基本公式如下:
矩阵求导知识——详细笔记_第1张图片
ps:矩阵乘法满足结合律

二、矩阵对标量或标量对矩阵求导

1.矩阵Y对标量x求导

基本公式如下:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2.标量y对列向量X求导:

基本公式如下:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,…,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,…,Dy/Dxn)’

3.行向量Y’对列向量X求导:

基本公式如下:

注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX’/dX = I
d(AX)’/dX = A’

4.列向量Y对行向量X’求导:

基本公式如下:

转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX’ = (dY’/dX)’

5.向量积对列向量X求导运算法则:

基本公式如下:

注意与标量求导有点不同。
d(UV’)/dX = (dU/dX)V’ + U(dV’/dX)
d(U’V)/dX = (dU’/dX)V + (dV’/dX)U’
重要结论:
d(X’A)/dX = (dX’/dX)A + (dA/dX)X’ = IA + 0X’ = A
d(AX)/dX’ = (d(X’A’)/dX)’ = (A’)’ = A
d(X’AX)/dX = (dX’/dX)AX + (d(AX)’/dX)X = AX + A’X

6.矩阵Y对列向量X求导:

基本公式如下:

将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。

7.矩阵积对列向量求导法则:

基本公式如下:

d(uV)/dX = (du/dX)V + u(dV/dX)
d(UV)/dX = (dU/dX)V + U(dV/dX)
重要结论:
d(X’A)/dX = (dX’/dX)A + X’(dA/dX) = IA + X’0 = A

8.标量y对矩阵X的导数:

基本公式如下:

类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [ Dy/Dx(ij) ]
重要结论:
y = U’XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV’
y = U’X’XU 则 dy/dX = 2XUU’
y = (XU-V)’(XU-V) 则 dy/dX = d(U’X’XU - 2V’XU + V’V)/dX = 2XUU’ - 2VU’ + 0 = 2(XU-V)U’


总结

本文对矩阵求导的相关公式和方法进行了简单总结,仅供参考!

你可能感兴趣的:(西瓜书笔记,线性代数)