- 程序员效率革命:DeepSeek深度使用手册与实战技巧全揭秘
后端
最近在技术社区里总能看到DeepSeek的身影,让我想起去年那个加班到凌晨三点的项目——当时为了调试分布式系统中的异步任务,整个团队在会议室里对着满墙的报错日志抓耳挠腮。直到后端老张突然掏出DeepSeek的实时监控模块,那些原本像天书一样的日志突然就变得脉络清晰起来。今天的程序员工具箱里,这个来自中国的AI开发平台正在掀起一场静悄悄的效率革命。刚接触DeepSeek时,我和很多同行一样,以为它就
- 程序员必看!手把手教你玩转DeepSeek大模型的5个实战技巧
后端
上个月在克拉玛依云计算产业园,我亲眼见到值班工程师用DeepSeek-R1大模型自动生成油田设备监测报告,原本需要3小时的工作现在10分钟就能完成。这让我突然意识到,这个刷爆朋友圈的AI工具,已经悄悄改变了程序员的工作方式。今天就跟大家聊聊,怎么让这个"代码外挂"真正成为你的生产力加速器。最近广东15个城市的政务系统集体升级,背后的秘密武器就是DeepSeek大模型。深圳程序员48小时完成全栈适配
- PostgreSQL的学习心得和知识总结(一百二十四)|深入理解PostgreSQL数据库开源扩展pgreplay的安装说明和使用场景
孤傲小二~阿沐
数据库postgresql开源
目录结构注:提前言明本文借鉴了以下博主、书籍或网站的内容,其列表如下:1、参考书籍:《PostgreSQL数据库内核分析》2、参考书籍:《数据库事务处理的艺术:事务管理与并发控制》3、PostgreSQL数据库仓库链接,点击前往4、日本著名PostgreSQL数据库专家铃木启修网站主页,点击前往5、参考书籍:《PostgreSQL中文手册》6、参考书籍:《PostgreSQL指南:内幕探索》,点击
- 寻找通义灵码 AI 程序员 {头号玩家} ,体验 QwQ-Plus、DeepSeek 满血版的通义灵码
云原生
2025年1月,通义灵码AI程序员全面上线,同时支持VSCode、JetBrainsIDEs,是国内首个真正落地的AI程序员。近期,通义灵码能力再升级全新上线模型选择功能,目前已经支持QwQ-plus、DeepSeek满血版模型,用户可以在VSCode和JetBrains里搜索并下载最新通义灵码插件,在输入框里选择模型,即可轻松切换模型。通义灵码联合CHERRY中国全网发起寻找AI程序员{头号玩家
- gemini 2.0 国内怎么使用?请收下这份最新使用攻略!
gemini-pro
好的,这是对原文的重写,力求在保持核心信息的同时,使用不同的表达方式和结构:AI新篇章:Gemini2.0如何触手可及?国内用户全攻略人工智能的浪潮再次汹涌而来,谷歌凭借其持续的创新,推出了备受瞩目的GeminiAI模型的升级版——Gemini2.0。这款新一代AI模型以其卓越的性能、广泛的应用场景和对多模态交互的深度支持,预示着一个全新AI时代的开启。2024年末,Gemini2.0Flash率
- π0:一种用于通用机器人控制的视觉-语言-动作流模型
强化学习曾小健
人工智能
π0:一种用于通用机器人控制的视觉-语言-动作流模型原创木木JS具身知识库2024年12月06日17:30广西
- 智能制造数字孪生概念模型与关键技术
人工智能深度学习
智能制造是新质生产力形成和发展的重要驱动力,是工业4.0/5.0的核心,以及推动实现高效、灵活、绿色、智能的生产方式。数字孪生技术作为智能制造的关键技术之一,通过构建物理设备与虚拟模型之间的实时映射和同步,为制造业的智能化、高效化提供有力支持,推动制造业的转型升级。智能制造数字孪生是在现代传感技术、网络技术、自动化技术、拟人化智能技术等技术的基础上,通过智能化的感知、人机交互、决策和执行技术,对产
- 用双色球数据集微调后的大模型
qq_29790801
人工智能NLP
最近用Qwen/Qwen1.5-1.8B-Chat大模型来微调训练双色球2003001-2025011的数据集,实验测一下大模型出球的预测情况。使用输入期数看它的输出如:prompt="2025012"messages=[6,10,14,17,23,25,12}]有兴趣的朋友也可以下载玩玩魔塔社区下载模型地址:魔搭社区魔塔社区下载数据集地址:魔搭社区huggingface下载模型地址:https:
- 数学建模与优化算法在确定X和Y值时,如何处理实验数据的不确定性?
学术乙方
油纸绝缘算法经验分享
在数学建模与优化算法中处理实验数据的不确定性以确定油纸绝缘系统中的X和Y值,可以参考以下方法和步骤:建立数学模型油纸绝缘系统的几何结构可以用X-Y模型来描述,其中X表示挡板厚度与总厚度的比值,Y表示间隔器宽度与总宽度的比值。这些参数直接影响油纸绝缘的介电特性。通过实验数据(如介电谱曲线)和理论模型,可以建立数学方程来描述X和Y对介电特性的影响。引入不确定性建模实验数据通常存在测量误差、环境变化等因
- 避坑指南:chatgpt账号购买成品号- chatgpt 4.0 plus成品号购买手册!
openai
购买ChatGPT账号的注意事项及指南✨在当前人工智能技术快速发展的背景下,ChatGPT作为一种强大的语言模型工具️,受到了广泛关注。然而,在获取ChatGPT账号的过程中,用户需审慎考虑多项关键因素,以确保所购账号的安全、可靠及合法性✅,规避潜在风险⚠️。本文将深入探讨购买ChatGPT账号时需重点关注的几个方面,并提供相关建议。1.账号来源审查️♂️账号来源是决定其安全性和可靠性的首要因素
- 2025年大模型AI产品经理学习路线图:零基础到精通,一篇收藏,开启学习之旅!悄悄努力然后惊艳所有人
AGI大模型老王
人工智能产品经理学习AI大模型大模型学习大模型AI产品经理
随着人工智能技术的发展,尤其是大模型(LargeModel)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。一、基础知识阶段1.计算机科学基础数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序
- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- 打造RAG系统:四大向量数据库Milvus、Faiss、Elasticsearch、Chroma 全面对比与选型指南
橙子小哥的代码世界
数据库数据库milvusfaiss人工智能深度学习神经网络elasticsearch
在当今信息爆炸的时代,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)系统已成为自然语言处理(NLP)领域的重要工具。RAG系统通过结合生成模型和信息检索技术,能够在大规模数据中高效地获取相关信息,生成更为精准和有针对性的内容。而在构建RAG系统时,选择合适的向量数据库是确保系统性能和可扩展性的关键一步。本文将深入对比四大主流向量数据库——Milvus、Fai
- 利用大型语言模型进行市场分析与预测
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着信息技术的飞速发展,企业积累了海量的文本数据,例如社交媒体帖子、产品评论、新闻报道等。这些数据蕴藏着丰富的市场信息,可以帮助企业更好地了解消费者需求、预测市场趋势、优化营销策略。然而,传统的数据分析方法往往难以有效地处理和分析这些非结构化文本数据。近年来,随着自然语言处理(NLP)技术的进步,大型语言模型(LLMs)在文本分析领域展现出强大的能力,为市场分析与预测带来了新的机遇。L
- 深度学习 PyTorch 中 18 种数据增强策略与实现
@Mr_LiuYang
计算机视觉基础数据增强深度学习torchvisiontransforms
深度学习pytorch之简单方法自定义9类卷积即插即用数据增强通过对训练数据进行多种变换,增加数据的多样性,它帮助我们提高模型的鲁棒性,并减少过拟合的风险。PyTorch提供torchvision.transforms模块丰富的数据增强操作,我们可以通过组合多种策略来实现复杂的增强效果。本文将介绍18种常用的图像数据增强策略,并展示如何使用PyTorch中的torchvision.transfor
- Spring Boot整合MinIO对象存储教程
嘵奇
提升自己springboot后端java
精心整理了最新的面试资料和简历模板,有需要的可以自行获取点击前往百度网盘获取点击前往夸克网盘获取以下是一份详细的SpringBoot整合MinIO的教程,包含基础配置和常用文件操作示例:SpringBoot整合MinIO对象存储教程一、MinIO简介MinIO是一款高性能、云原生的分布式对象存储系统,兼容AmazonS3API。适用于存储图片、文档、视频等非结构化数据。二、环境准备安装MinIO服
- MVVM及数据代理
真der~啊
Vue2Vue2
MVVM及数据代理2.2.1MVVM分层思想MVVM是什么?M:Model(模型/数据):代表应用程序的数据和业务逻辑,它可以是从服务器获取的数据、本地存储的数据,或者是应用程序内部产生的数据。例如,在一个电商应用中,商品的信息(如名称、价格、库存等)就属于Model的范畴。V:View(视图):负责展示数据给用户,是用户直接交互的界面部分。比如电商应用中的商品列表页面、商品详情页面等。VM:Vi
- 必看!计算机毕设答辩高分技巧,让你脱颖而出
源码姑娘
毕业设计
必看!计算机毕设答辩高分技巧,让你脱颖而出一、答辩前的充分准备:技术与内容的“双向打磨”1.吃透项目,技术实现了然于胸计算机毕设的核心在于技术逻辑与系统设计的合理性。答辩前需反复回顾代码实现、架构设计、数据库模型等关键细节,确保能清晰阐述以下问题:技术选型依据:为何选择SpringBoot而非其他框架?所选算法的优势与局限性是什么?系统功能验证:如何通过测试用例或用户反馈验证系统可行性?若涉及机器
- yolov5代码详解--1.python代码脚本
三炭先生
yolo算法YOLOpython算法
一、detect.py作为YOLOv5模型推理的核心执行文件,detect.py实现了从数据加载到结果输出的完整目标检测流水线。本文只讲代码中最主要的opt内函数的含义,这是detect最核心的东西,至于其他的代码注释我会放在下面,有什么不懂可以评论区提问。下面对每个命令行参数进行详细介绍,说明它们在检测推理过程中的含义和作用:--weights指定模型权重文件的路径(或多个路径),也可以是远程T
- Python 流程控制终极指南:if-else 和 for-while深度解析
吴师兄大模型
python开发语言if-elsefor-whilebreakcontinue编程
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 大模型“瘦身”革命——模型压缩与加速
大模型应用场景
人工智能开源transformer自然语言处理ai大模型LLM
随着AI大模型(如GPT、BERT、DALL·E等)的崛起,它们在自然语言处理、图像生成等领域的表现令人惊叹。然而,大模型的参数量动辄数十亿甚至上千亿,带来了巨大的计算资源消耗和部署成本。如何在保持模型性能的同时,降低其计算和存储需求,成为了AI领域的热门话题。本文将深入探讨AI大模型的“瘦身”革命——模型压缩与加速技术,帮助开发者高效部署大模型。一、为什么需要模型压缩与加速?AI大模型(如GPT
- 利用神经网络来解决鸢尾花分类任务(附实验结果和代码)
侠之大者231
深度学习实战机器学习深度学习人工智能分类神经网络
前言本篇文章使用自己亲手搭建的神经网络模型来解决鸢尾花数据集的分类任务,读者们可以通过该简单的任务进一步理解神经网络,并且可以自己动手去搭建神经网络。鸢尾花数据集的介绍https://archive.ics.uci.edu/ml/index.php大家可以通过这个网站下载鸢尾花数据集,里面有各种经典数据集供大家使用。附:本来想给大家具体讲一讲的,但发现网站里面讲的已经很详细了,大家想用的自己去了解
- 从前端程序员到大模型工程师的转型攻略
七七Seven~
前端语言模型人工智能学习chatgpt算法
在科技日新月异的今天,人工智能(AI)特别是大规模预训练模型(大模型)的发展正引领着新一轮的技术革命。对于一位有志于从专注于用户界面设计和开发的前端程序员转向这个充满潜力领域的专业人士来说,这不仅是一次技术栈的转换,更是一个思维方式和个人职业发展的重大转变。本文将提供一个详尽的指南,帮助你顺利地完成这一过渡。第一阶段:打牢基础(第1-4周)深入了解AI与机器学习概念理解:阅读相关书籍、在线课程或观
- PyBroker:利用 Python 和机器学习助力算法交易
skywalk8163
人工智能编程语言量化分析python机器学习算法
PyBroker:利用Python和机器学习助力算法交易你是否希望借助Python和机器学习的力量来优化你的交易策略?那么你需要了解一下PyBroker!这个Python框架专为开发算法交易策略而设计,尤其关注使用机器学习的策略。借助PyBroker,你可以轻松创建和微调交易规则,构建强大的模型,并深入了解你的策略表现。PyBroker介绍官方说明文档:利用PyBroker进行量化投资官方说明文档
- 深度学习笔记——Resnet和迁移学习
肆——
深度学习深度学习笔记迁移学习
1.ResNet的提出深度学习与网络深度的挑战:在深度学习中,网络的“深度”(即层数)通常与模型的能力成正比。然而,随着网络深度的增加,一些问题也随之出现,最突出的是梯度消失/爆炸问题。这使得深层网络难以训练。梯度消失:梯度消失是指在训练深度神经网络时,通过多层传递的梯度(误差)变得非常小,接近于零。这导致网络中较早层的权重更新非常缓慢,甚至几乎不更新。梯度爆炸:梯度爆炸是指在训练深度神经网络时,
- SOAP与NETCONF:协议特性、场景与应用全景解析
leo·li
SOAPNETCONF
在分布式系统和网络管理领域,SOAP与NETCONF是两类关键协议,它们看似都与“数据传输”相关,但设计理念和应用场景截然不同一、协议定位:跨平台信使与网络配置专家1.SOAP:异构系统的“标准化信使”核心角色SOAP(简单对象访问协议)如同一位精通多国语言的翻译官,专注于解决异构系统间的通信难题。它基于XML定义了一套严格的通信规则,允许Java、.NET、Python等不同技术栈的系统无缝交互
- Mysql 复习笔记- 基础篇9 [数据库索引概述]
void.bug
mysql断言mysql数据库
索引的优缺点优点索引大大减小了服务器需要扫描的数据量索引可以帮助服务器避免排序和临时表索引可以将随机IO变成顺序IO索引对于InnoDB(对索引支持行级锁)非常重要,因为它可以让查询锁更少的元组。在MySQL5.1和更新的版本中,InnoDB可以在服务器端过滤掉行后就释放锁,但在早期的MySQL版本中,InnoDB直到事务提交时才会解锁。对不需要的元组的加锁,会增加锁的开销,降低并发性。InnoD
- 大模型交互-超拟人合成
定制开发才有价值
交互开发语言java
1、超拟人合成:将文字转化为自然流畅的人声,在实时语音合成的基础上,精准模拟人类的副语言现象,如呼吸、叹气、语速变化等,使得语音不仅流畅自然,更富有情感和生命力。2、唤醒的持久运行--->合成能力加持(唤醒成功后语音答复:主人我在)--->调用在线或离线听写能力(建议用讯飞在线效果好)--->识别用户说的语音成文字后发给大模型--->建议调用讯飞星火认知大模型--->获取大模型答案后调用语音合成(
- (十)Ubuntu 20.04+akiaaa大神 Stable Diffusion整合包 AI绘画教程-外挂VAE模型等快捷设置教程
浪淘沙jkp
stablediffusionAI作画
一、说明我们在运行Stable-Diffusion-webuiclip时初始快捷设置为如图所示我们需要显示“外挂VAE模型”以及“clip终止层数”的快捷设置,我们需要在设置中设置参数二、参数设置依次点击设置---》用户界面---》快捷设置列表然后再下拉菜单中选择这两部居然不行,没有出现想要的效果,后来我后天bashwebui.sh-f了一下下,就可以了看下图
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul