请注意,下文的趋近是一个过程,而不是一个状态
f ( x ) = g ( x ) + o ( Δ x ) f(x) = g(x) + o(\Delta x) f(x)=g(x)+o(Δx)
f ( x ) − f ( a ) = f ′ ( a ) Δ x + o ( Δ x ) f(x) - f(a) = f'(a)\Delta x + o(\Delta x) f(x)−f(a)=f′(a)Δx+o(Δx)
注意,此时导数是假想出来的,可微才存在导数(斜率)。此处尚未证明可微。
l i m Δ x − > 0 f ( x ) − f ( a ) Δ x lim_{\Delta x -> 0} \frac {f(x) - f(a)}{\Delta x} limΔx−>0Δxf(x)−f(a)
= f ′ ( x ) + l i m Δ x − > 0 o ( Δ x ) / Δ x = f'(x) + lim_{\Delta x -> 0} o(\Delta x)/\Delta x =f′(x)+limΔx−>0o(Δx)/Δx
( A , B , C ) ⋅ ( x − x 0 , y − y 0 , z − z 0 ) (A, B, C) · (x-x_0, y-y_0, z-z_0) (A,B,C)⋅(x−x0,y−y0,z−z0)
= A Δ x + B Δ y + C Δ z = 0 = A\Delta x + B\Delta y + C\Delta z = 0 =AΔx+BΔy+CΔz=0
注意这里是点乘运算,(x, y, z)是平面上的任意一点
o ( ( Δ x 2 + Δ y 2 ) 1 / 2 ) o((\Delta x^2 + \Delta y^2)^{1/2}) o((Δx2+Δy2)1/2)
v 1 = ( 1 , 0 , δ z δ x ∣ x 0 , y 0 ) v1 = (1, 0, \frac {\delta z}{\delta x}|_{x0, y0}) v1=(1,0,δxδz∣x0,y0)
v 2 = ( 0 , 1 , δ z δ y ∣ x 0 , y 0 ) v2 = (0, 1, \frac {\delta z}{\delta y}|_{x0, y0}) v2=(0,1,δyδz∣x0,y0)
v 3 = ( δ z δ x ∣ x 0 , y 0 , δ z δ y ∣ x 0 , y 0 , − 1 ) v3 = (\frac {\delta z}{\delta x}|_{x0, y0}, \frac {\delta z}{\delta y}|_{x0, y0}, -1) v3=(δxδz∣x0,y0,δyδz∣x0,y0,−1)
v 3 ⋅ ( d x , d y , d z ) = 0 v3 · (dx, dy, dz) = 0 v3⋅(dx,dy,dz)=0
δ z δ x d x + δ z δ y d y − d z = 0 \frac {\delta z}{\delta x}dx + \frac {\delta z}{\delta y}dy - dz = 0 δxδzdx+δyδzdy−dz=0
δ z δ x d x + δ z δ y d y = d z \frac {\delta z}{\delta x}dx + \frac {\delta z}{\delta y}dy = dz δxδzdx+δyδzdy=dz
Δ z − d z = o ( ( Δ x 2 + Δ y 2 ) 1 / 2 ) \Delta z - dz = o((\Delta x^2 + \Delta y^2)^{1/2}) Δz−dz=o((Δx2+Δy2)1/2)
这里不再继续写极限描述了,证明高阶无穷小即可
Δ z = δ z δ x Δ x + δ z δ y Δ y + o ( ( Δ x 2 + Δ y 2 ) 1 / 2 ) \Delta z = \frac {\delta z}{\delta x}\Delta x + \frac {\delta z}{\delta y}\Delta y + o((\Delta x^2 + \Delta y^2)^{1/2}) Δz=δxδzΔx+δyδzΔy+o((Δx2+Δy2)1/2)