原式 = ∫ 1 5 x + 3 d x = 1 5 ∫ 1 5 x + 3 d ( 5 x + 3 ) = 1 5 l n ( 5 x + 3 ) + C \begin{aligned} \text{原式}&=\int \frac{1}{5x+3}dx \\ &=\frac{1}{5} \int\frac{1}{5x+3}d(5x+3) \\ &=\frac{1}{5} ln(5x+3) +C \end{aligned} 原式=∫5x+31dx=51∫5x+31d(5x+3)=51ln(5x+3)+C
原式 = ∫ e 2 x + 3 d x = 1 2 ∫ e 2 x + 3 d ( 2 x + 3 ) = 1 2 e 2 x + 3 + C \begin{aligned} \text{原式}&=\int e^{2x+3}dx \\ &=\frac{1}{2} \int e^{2x+3}d(2x+3) \\ &=\frac{1}{2} e^{2x+3}+C \end{aligned} 原式=∫e2x+3dx=21∫e2x+3d(2x+3)=21e2x+3+C
原式 = ∫ x e x 2 d x = 1 2 ∫ e x 2 d x 2 = 1 2 e x 2 + C \begin{aligned} \text{原式}&=\int xe^{x^2} dx \\ &= \frac{1}{2} \int e^{x^2} dx^2 \\ &=\frac{1}{2}e^{x^2}+C \end{aligned} 原式=∫xex2dx=21∫ex2dx2=21ex2+C
原式 = ∫ x 1 − x 2 d x = − 1 2 ∫ 1 − x 2 d ( 1 − x 2 ) = − 1 3 ( 1 − x 2 ) 3 2 + C \begin{aligned} \text{原式}&=\int x\sqrt{1-x^2} dx \\ &=-\frac{1}{2} \int \sqrt{1-x^2}d(1-x^2) \\ &=-\frac{1}{3}(1-x^2)^{\frac{3}{2} } +C \end{aligned} 原式=∫x1−x2dx=−21∫1−x2d(1−x2)=−31(1−x2)23+C
原式 = ∫ 1 x 2 s i n 1 x d x = − ∫ s i n 1 x d ( 1 x ) = c o s ( 1 x ) + C \begin{aligned} \text{原式}&=\int \frac{1}{x^2}sin{\frac{1}{x}} dx \\ &=-\int sin{\frac{1}{x}}d(\frac{1}{x} ) \\ &=cos(\frac{1}{x})+C \end{aligned} 原式=∫x21sinx1dx=−∫sinx1d(x1)=cos(x1)+C
原式 = ∫ e 3 x x d x = 2 ∫ e 3 x 2 x d x = 2 3 ∫ e 3 x d ( 3 x ) = 2 3 e 3 x + C \begin{aligned} \text{原式}&=\int \frac{e^{3\sqrt[]{x} }}{\sqrt[]{x}} dx \\ &=2\int \frac{e^{3\sqrt[]{x} }}{2\sqrt{x} } dx \\ &=\frac{2}{3} \int e^{3\sqrt[]{x} }d(3\sqrt[]{x}) \\ &=\frac{2}{3}e^{3\sqrt[]{x}}+C \end{aligned} 原式=∫xe3xdx=2∫2xe3xdx=32∫e3xd(3x)=32e3x+C
原式 = ∫ 1 x ( 1 + x 6 ) d x = ∫ ( 1 x − x 5 1 + x 6 ) d x = l n x − 1 6 ∫ 1 1 + x 6 d ( 1 + x 6 ) = l n x − 1 6 l n ( 1 + x 6 ) + C \begin{aligned} \text{原式}&=\int \frac{1}{x(1+x^6)} dx \\ &=\int (\frac{1}{x}-\frac{x^5}{1+x^6} )dx \\ &=lnx-\frac{1}{6} \int \frac{1}{1+x^6} d(1+x^6) \\ &=lnx-\frac{1}{6}ln(1+x^6)+C \end{aligned} 原式=∫x(1+x6)1dx=∫(x1−1+x6x5)dx=lnx−61∫1+x61d(1+x6)=lnx−61ln(1+x6)+C
原式 = ∫ c o s 2 x d x = 1 2 ∫ c o s 2 x d 2 x = 1 2 s i n 2 x + C \begin{aligned} \text{原式}&=\int cos2x dx \\ &=\frac{1}{2} \int cos2x d2x \\ &=\frac{1}{2}sin2x +C \end{aligned} 原式=∫cos2xdx=21∫cos2xd2x=21sin2x+C
原式 = ∫ s i n x 5 + c o s x d x = − ∫ 1 5 + c o s x d ( 5 + c o s x ) = − 2 ∫ 1 2 5 + c o s x d ( 5 + c o s x ) = − 2 5 + c o s x + C \begin{aligned} \text{原式}&=\int \frac{sinx}{\sqrt[]{5+cosx} }dx \\ &=-\int \frac{1}{\sqrt[]{5+cosx}} d(5+cosx) \\ &=-2\int \frac{1}{2~\sqrt[]{5+cosx}}d(5+cosx) \\ &=-2~\sqrt[]{5+cosx}+C \end{aligned} 原式=∫5+cosxsinxdx=−∫5+cosx1d(5+cosx)=−2∫2 5+cosx1d(5+cosx)=−2 5+cosx+C
原式 = ∫ t a n 4 x d x = ∫ ( s e c 2 x − 1 ) 2 d x = ∫ ( s e c 4 x − 2 s e c 2 x + 1 ) d x = ∫ s e c 2 x ( s e c 2 x − 2 ) d x + ∫ 1 d x = ∫ s e c 2 x ( t a n 2 x − 1 ) d x + x = ∫ s e c 2 x t a n 2 x d x − ∫ s e c 2 d x + x = ∫ t a n 2 x d t a n x − t a n x + x = 1 3 t a n 3 x − t a n x + x + C \begin{aligned} \text{原式}&=\int tan^4xdx \\ &=\int(sec^2x-1)^2dx \\ &=\int (sec^4x-2sec^2x+1)dx \\ &=\int sec^2x(sec^2x-2) dx+\int 1dx \\ &=\int sec^2x(tan^2x-1) dx+x \\ &=\int sec^2xtan^2xdx-\int sec^2 dx+x \\ &=\int tan^2x dtanx -tanx+x \\ &=\frac{1}{3}tan^3x -tanx +x+C \end{aligned} 原式=∫tan4xdx=∫(sec2x−1)2dx=∫(sec4x−2sec2x+1)dx=∫sec2x(sec2x−2)dx+∫1dx=∫sec2x(tan2x−1)dx+x=∫sec2xtan2xdx−∫sec2dx+x=∫tan2xdtanx−tanx+x=31tan3x−tanx+x+C
原式 = ∫ e 2 x 1 + e x d x = ∫ e 2 x − 1 + 1 1 + e x d x = ∫ ( e x − 1 ) ( e x + 1 ) + 1 1 + e x d x = ∫ ( e x − 1 ) d x + ∫ 1 1 + e x d x = e x − x + ∫ 1 + e x − e x 1 + e x d x = e x − x + ∫ 1 d x − ∫ e x 1 + e x d x = e x − ∫ 1 1 + e x d e x = e x − l n ( 1 + e x ) + C \begin{aligned} \text{原式}&=\int \frac{e^{2x}}{1+e^x} dx \\ &=\int\frac{e^{2x}-1+1}{1+e^x} dx \\ &=\int\frac{(e^x-1)(e^x+1)+1}{1+e^x} dx \\ &=\int (e^x-1)dx+\int \frac{1}{1+e^x} dx \\ &=e^x-x+\int \frac{1+e^x-e^x}{1+e^x} dx \\ &=e^x-x+\int 1 dx-\int \frac{e^x}{1+e^x} dx \\ &=e^x-\int \frac{1}{1+e^x} de^x \\ &=e^x-ln(1+e^x)+C \end{aligned} 原式=∫1+exe2xdx=∫1+exe2x−1+1dx=∫1+ex(ex−1)(ex+1)+1dx=∫(ex−1)dx+∫1+ex1dx=ex−x+∫1+ex1+ex−exdx=ex−x+∫1dx−∫1+exexdx=ex−∫1+ex1dex=ex−ln(1+ex)+C
原式 = ∫ 1 1 + e x d x = ∫ 1 + e x − e x 1 + e x d x = ∫ 1 d x − ∫ e x 1 + e x d x = x − ∫ 1 1 + e x d e x = x − l n ( 1 + e x ) + C \begin{aligned} \text{原式}&=\int \frac{1}{1+e^x} dx \\ &=\int \frac{1+e^x-e^x}{1+e^x} dx \\ &=\int 1 dx-\int \frac{e^x}{1+e^x} dx \\ &=x-\int \frac{1}{1+e^x} de^x \\ &=x-ln(1+e^x)+C \end{aligned} 原式=∫1+ex1dx=∫1+ex1+ex−exdx=∫1dx−∫1+exexdx=x−∫1+ex1dex=x−ln(1+ex)+C
原式 = ∫ 1 x l n 2 x = ∫ 1 l n 2 x d l n x = − 1 l n x + C \begin{aligned} \text{原式}&=\int \frac{1}{xln^2x} \\ &= \int \frac{1}{ln^2x}dlnx \\ &= -\frac{1}{lnx} + C \end{aligned} 原式=∫xln2x1=∫ln2x1dlnx=−lnx1+C
原式 = ∫ 1 x ( 1 + 2 l n x ) d x = 1 2 ∫ 1 1 + 2 l n x d ( 2 l n x ) = 1 2 l n ( 1 + 2 l n x ) + C \begin{aligned} \text{原式}&=\int \frac{1}{x(1+2lnx)}dx \\ &=\frac{1}{2} \int \frac{1}{1+2lnx} d(2lnx) \\ &=\frac{1}{2}ln(1+2lnx)+C \end{aligned} 原式=∫x(1+2lnx)1dx=21∫1+2lnx1d(2lnx)=21ln(1+2lnx)+C
原式 = ∫ 1 a 2 c o s 2 x + b 2 s i n 2 x d x = ∫ 1 c o s 2 x a 2 + b 2 t a n 2 x d x = ∫ s e c 2 x a 2 + b 2 t a n 2 x d x = ∫ 1 a 2 + b 2 t a n 2 x d t a n x = 1 a b ∫ 1 1 + b 2 t a n 2 x a 2 d ( b t a n x a ) = 1 a b a r c t a n ( b t a n x a ) + C \begin{aligned} \text{原式}&=\int \frac{1}{a^2cos^2x+b^2sin^2x}dx \\ &=\int \frac{\frac{1}{cos^2x} }{a^2+b^2tan^2x}dx \\ &=\int \frac{sec^2x }{a^2+b^2tan^2x}dx \\ &=\int \frac{1}{a^2+b^2tan^2x}dtanx \\ &=\frac{1}{ab} \int \frac{1}{1+\frac{b^2tan^2x}{a^2} }d(\frac{btanx}{a}) \\ &=\frac{1}{ab}arctan(\frac{btanx}{a}) +C \end{aligned} 原式=∫a2cos2x+b2sin2x1dx=∫a2+b2tan2xcos2x1dx=∫a2+b2tan2xsec2xdx=∫a2+b2tan2x1dtanx=ab1∫1+a2b2tan2x1d(abtanx)=ab1arctan(abtanx)+C
原式 = ∫ 1 a 2 + x 2 d x = 1 a a r c tan x a + C \begin{aligned} \text{原式}&=\int{\frac{1}{a^2+x^2}}dx \\ &=\frac{1}{a}\mathrm{arc}\tan \frac{x}{a}+C \end{aligned} 原式=∫a2+x21dx=a1arctanax+C
原式 = ∫ 1 a 2 − x 2 d x = 1 2 a ln ∣ ln x − a x + a ∣ + C \begin{aligned} \text{原式}&=\int{\frac{1}{a^2-x^2}}dx \\ &=\frac{1}{2a}\ln \mid \ln \frac{x-a}{x+a}\mid +C \end{aligned} 原式=∫a2−x21dx=2a1ln∣lnx+ax−a∣+C
原式 = ∫ 1 a 2 − x 2 d x = a r c sin x a + C \begin{aligned} \text{原式}&=\int{\frac{1}{\sqrt{a^2-x^2}}dx} \\ &=\mathrm{arc}\sin \frac{x}{a}+C \end{aligned} 原式=∫a2−x21dx=arcsinax+C
原式 = ∫ sin 3 x d x = − ∫ sin 2 x d cos x = − ∫ 1 − cos 2 x d cos x = − cos x + 1 3 cos 3 x + C \begin{aligned} \text{原式}&=\int{\sin ^3xdx} \\ &=-\int{\sin ^2xd\cos x} \\ &=-\int{1-\cos ^2xd\cos x} \\ &=-\cos x+\frac{1}{3}\cos ^3x+C \end{aligned} 原式=∫sin3xdx=−∫sin2xdcosx=−∫1−cos2xdcosx=−cosx+31cos3x+C
原式 = ∫ sin 5 x d x = − ∫ sin 4 x d cos x = − ∫ ( 1 − cos 2 x ) 2 d cos x = − ∫ ( 1 − 2 cos 2 x + cos 4 x ) d cos x = − cos x + 2 3 cos 3 x + 1 5 cos 5 x + C \begin{aligned} \text{原式}&=\int{\sin ^5x}dx \\ &=-\int{\sin ^4xd\cos x} \\ &=-\int{\left( 1-\cos ^2x \right) ^2d\cos x} \\ &=-\int{\left( 1-2\cos ^2x+\cos ^4x \right) d\cos x} \\ &=-\cos x+\frac{2}{3}\cos ^3x+\frac{1}{5}\cos ^5x+C \end{aligned} 原式=∫sin5xdx=−∫sin4xdcosx=−∫(1−cos2x)2dcosx=−∫(1−2cos2x+cos4x)dcosx=−cosx+32cos3x+51cos5x+C
原式 = ∫ cos 3 x d x = ∫ cos 2 x d sin x = ∫ ( 1 − sin 2 x ) d sin x = sin x − 1 3 sin 3 x + C \begin{aligned} \text{原式}&=\int{\cos ^3xdx} \\ &=\int{\cos ^2xd\sin x} \\ &=\int{\left( 1-\sin ^2x \right) d\sin x} \\ &=\sin x-\frac{1}{3}\sin ^3x+C \end{aligned} 原式=∫cos3xdx=∫cos2xdsinx=∫(1−sin2x)dsinx=sinx−31sin3x+C
原式 = ∫ sin 4 x d x = − ∫ ( 1 − cos 2 x 2 ) 2 d x = 1 4 ∫ ( 1 − cos 2 x ) 2 d x = 1 4 ∫ ( 1 − 2 cos 2 x + + cos 2 2 x ) d x = 1 4 x + ∫ cos 2 2 x d x − 1 4 sin 2 x = 1 4 x − 1 4 sin 2 x + 1 4 ∫ cos 4 x + 1 2 d x = 1 4 x − 1 4 sin 2 x + 1 8 ∫ ( cos 4 x + 1 ) d x = 1 4 x − 1 4 sin 2 x + 1 8 x + 1 8 ∫ cos 4 x d x = 3 8 x − 1 4 sin 2 x + 1 32 sin 4 x + C \begin{aligned} \text{原式}&=\int{\sin ^4xdx} \\ &=-\int{\left( \frac{1-\cos 2x}{2} \right) ^2dx} \\ &=\frac{1}{4}\int{\left( 1-\cos 2x \right) ^2dx} \\ &=\frac{1}{4}\int{\left( 1-2\cos 2x++\cos ^22x \right) dx} \\ &=\frac{1}{4}x+\int{\cos ^22xdx-\frac{1}{4}\sin 2x} \\ &=\frac{1}{4}x-\frac{1}{4}\sin 2x+\frac{1}{4}\int{\frac{\cos 4x+1}{2}}dx \\ &=\frac{1}{4}x-\frac{1}{4}\sin 2x+\frac{1}{8}\int{\left( \cos 4x+1 \right) dx} \\ &=\frac{1}{4}x-\frac{1}{4}\sin 2x+\frac{1}{8}x+\frac{1}{8}\int{\cos 4xdx} \\ &=\frac{3}{8}x-\frac{1}{4}\sin 2x+\frac{1}{32}\sin 4x+C \end{aligned} 原式=∫sin4xdx=−∫(21−cos2x)2dx=41∫(1−cos2x)2dx=41∫(1−2cos2x++cos22x)dx=41x+∫cos22xdx−41sin2x=41x−41sin2x+41∫2cos4x+1dx=41x−41sin2x+81∫(cos4x+1)dx=41x−41sin2x+81x+81∫cos4xdx=83x−41sin2x+321sin4x+C
原式 = ∫ sin 2 x cos 5 x d x = ∫ sin 2 x ( 1 − sin 2 x ) 2 d sin x = ∫ ( sin 2 x + sin 6 x − 2 sin 4 x ) d sin x = 1 3 sin 3 x + 1 7 sin 7 x − 2 5 sin 5 x + C \begin{aligned} \text{原式}&=\int{\sin ^2x\cos ^5xdx} \\ &=\int{\sin ^2x\left( 1-\sin ^2x \right) ^2d\sin x} \\ &=\int{\left( \sin ^2x+\sin ^6x-2\sin ^4x \right) d\sin x} \\ &=\frac{1}{3}\sin ^3x+\frac{1}{7}\sin ^7x-\frac{2}{5}\sin ^5x+C \end{aligned} 原式=∫sin2xcos5xdx=∫sin2x(1−sin2x)2dsinx=∫(sin2x+sin6x−2sin4x)dsinx=31sin3x+71sin7x−52sin5x+C
原式 = ∫ sec x d x = ∫ 1 cos x d x = ∫ 1 cos 2 x d sin x = ∫ 1 1 − sin 2 x d sin x = 1 2 ∫ ( 1 1 + sin x + 1 1 − sin x ) d sin x = 1 2 ln ( 1 + sin x 1 − sin x ) + C \begin{aligned} \text{原式}&=\int{\sec xdx} \\ &=\int{\frac{1}{\cos x}dx} \\ &=\int{\frac{1}{\cos ^2x}d\sin x} \\ &=\int{\frac{1}{1-\sin ^2x}d\sin x} \\ &=\frac{1}{2}\int{\left( \frac{1}{1+\sin x}+\frac{1}{1-\sin x} \right) d\sin x} \\ &=\frac{1}{2}\ln \left( \frac{1+\sin x}{1-\sin x} \right) +C \end{aligned} 原式=∫secxdx=∫cosx1dx=∫cos2x1dsinx=∫1−sin2x1dsinx=21∫(1+sinx1+1−sinx1)dsinx=21ln(1−sinx1+sinx)+C
原式 = ∫ sec 3 x tan 5 x d x = ∫ sin 5 x cos 8 x d x = − ∫ ( 1 − cos 2 x ) 2 cos 8 x d cos x = − ∫ ( 1 − t 2 ) 2 t 8 d t = − ∫ ( 1 t 8 + 1 t 4 − 2 t 6 ) d t = 1 7 t 7 + 1 3 t 3 − 2 5 t 5 + C = 1 7 cos 7 x + 1 3 cos 3 x − 2 5 cos 5 x + C \begin{aligned} \text{原式}&=\int{\sec ^3x\tan ^5xdx} \\ &=\int{\frac{\sin ^5x}{\cos ^8x}dx} \\ &=-\int{\frac{\left( 1-\cos ^2x \right) ^2}{\cos ^8x}}d\cos x \\ &=-\int{\frac{\left( 1-t^2 \right) ^2}{t^8}dt} \\ &=-\int{\left( \frac{1}{t^8}+\frac{1}{t^4}-\frac{2}{t^6} \right) dt} \\ &=\frac{1}{7t^7}+\frac{1}{3t^3}-\frac{2}{5t^5}+C \\ &=\frac{1}{7\cos ^7x}+\frac{1}{3\cos ^3x}-\frac{2}{5\cos ^5x}+C \end{aligned} 原式=∫sec3xtan5xdx=∫cos8xsin5xdx=−∫cos8x(1−cos2x)2dcosx=−∫t8(1−t2)2dt=−∫(t81+t41−t62)dt=7t71+3t31−5t52+C=7cos7x1+3cos3x1−5cos5x2+C
原式 = ∫ tan 5 x sec 4 x d x = ∫ sin 5 x cos 9 x d x = − ∫ sin 4 x cos 9 x d cos x = − ∫ ( 1 − cos 2 x ) 2 cos 9 x d cos x = − ∫ 1 − 2 cos 2 x + cos 4 x cos 9 x d cos x = − ( ∫ 1 cos 9 x d cos x − 2 ∫ 1 cos 7 x d cos x + ∫ 1 cos 5 x d cos x ) = 1 8 cos 8 x − 1 3 cos 6 x + 1 4 cos 4 x + C \begin{aligned} \text{原式}&=\int{\tan ^5x\sec ^4xdx} \\ &=\int{\frac{\sin ^5x}{\cos ^9x}dx} \\ &=-\int{\frac{\sin ^4x}{\cos ^9x}d\cos x} \\ &=-\int{\frac{\left( 1-\cos ^2x \right) ^2}{\cos ^9x}d\cos x} \\ &=-\int{\frac{1-2\cos ^2x+\cos ^4x}{\cos ^9x}}d\cos x \\ &=-\left( \int{\frac{1}{\cos ^9x}d\cos x-2\int{\frac{1}{\cos ^7x}d\cos x+\int{\frac{1}{\cos ^5x}}d\cos x}} \right) \\ &=\frac{1}{8\cos ^8x}-\frac{1}{3\cos ^6x}+\frac{1}{4\cos ^4x}+C \end{aligned} 原式=∫tan5xsec4xdx=∫cos9xsin5xdx=−∫cos9xsin4xdcosx=−∫cos9x(1−cos2x)2dcosx=−∫cos9x1−2cos2x+cos4xdcosx=−(∫cos9x1dcosx−2∫cos7x1dcosx+∫cos5x1dcosx)=8cos8x1−3cos6x1+4cos4x1+C