- 【DeepSeek零基础入门】从零开始:如何训练自己的AI模型
Evaporator Core
DeepSeek进阶开发与应用#DeepSeek快速入门deepseek应用开发实例deepseek
从零开始:如何训练自己的AI模型在人工智能的世界里,训练一个属于自己的AI模型,就像是在培养一个新生儿。你需要耐心、技巧,以及对数据的深刻理解。今天,我们将一起探索如何从零开始,训练一个AI模型,并通过一个具体的案例来加深理解。第一步:明确目标与选择框架在开始之前,首先要明确你的AI模型需要解决什么问题。是图像识别、自然语言处理,还是预测分析?明确目标后,选择一个合适的机器学习框架至关重要。Ten
- ollama安装(ubuntu20.04)
名栩
#ollama大模型实战LLMollama安装
Ollama是一款开源的自然语言处理工具,它可以帮助开发者快速构建文本处理应用。ollama官网:https://ollama.ai/一、ollama自动安装linux统一采用sh脚本安装,一个命令行搞定。curl-fsSLhttps://ollama.com/install.sh|sh二、ollama手动安装ollama自动安装是通过github拉取下载包(现在安装包已经1G以上),在国内经常下
- DeepSeek在MATLAB上的部署与应用
CodeJourney.
数据库人工智能算法架构
在科技飞速发展的当下,人工智能与编程语言的融合不断拓展着创新边界。DeepSeek作为一款备受瞩目的大语言模型,其在自然语言处理领域展现出强大的能力。而MATLAB,作为科学计算和工程领域广泛应用的专业软件,拥有丰富的工具包和高效的算法环境。将DeepSeek部署在MATLAB上,能够充分发挥两者的优势,为众多领域带来全新的解决方案和无限可能。本文将深入探讨如何在MATLAB上部署DeepSeek
- DeepSeek混合精度训练核心技术解析与实践指南
燃灯工作室
Deepseek数据挖掘语音识别计算机视觉目标检测机器学习人工智能
1.主题背景1.1Why混合精度训练(价值)混合精度训练通过结合FP16和FP32数据格式,在保证模型精度的前提下实现:40-60%显存占用降低(ResNet50案例:从7.8GB降至4.2GB)1.5-3倍训练速度提升(BERT-Large案例:从8h缩短至5h)突破大模型训练显存瓶颈(GPT-3训练显存需求从3TB降至1.8TB)1.2行业定位属于深度学习基础设施层的训练优化技术,处于模型开发
- 为什么词向量和权重矩阵dot运算就能得到想要的效果呢?
cjl30804
矩阵线性代数nlp
最近在学习NLP算法的时候,进入到了深水区以后,发现了弄懂这个才是核心中的核心,抓住了主要矛盾了。特意拿出来跟大家分享。词向量(WordEmbeddings)和权重矩阵的点积运算之所以能够帮助我们实现特定的效果,主要是因为它们在神经网络架构中扮演的角色以及背后的数学原理。具体来说,在自然语言处理任务中,这种操作通常出现在如Transformer模型中的自注意力机制里。让我们深入探讨一下为什么这种方
- Engineering A Large Language Model From Scratch
UnknownBody
语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EngineeringALargeLanguageModelFromScratch》的翻译。从头开始设计一个大语言模型摘要1引言2Atinuke算法3结果4相关工作5讨论6结论摘要自然语言处理(NLP)中深度学习的激增导致了创新技术的发展和发布,这些技术能够熟练地理解和生成人类语言。Atinuke是一种基于Transformer的神经网络,通过使用独特的配置来优化各种语
- 智能测试执行 利用算法 利用图像识别、自然语言处理等技术实现自动化测试执行
小赖同学啊
python人工智能自动化测试(apppcAPI)自然语言处理人工智能
以下将从Web应用和移动应用两个方面,给出利用图像识别、自然语言处理等技术实现自动化测试执行的实例,并附上部分代码示例。Web应用自动化测试实例:模拟用户登录操作测试需求理解对于一个Web应用的登录功能进行自动化测试,我们可以结合自然语言处理理解测试用例描述,用图像识别来验证登录成功后的页面元素,以确保登录功能正常。实现步骤与代码示例importtimeimportpyautoguiimportp
- 如何在Java中实现多头注意力机制:从Transformer模型入手
省赚客app开发者
javatransformer开发语言
如何在Java中实现多头注意力机制:从Transformer模型入手大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!多头注意力机制(Multi-HeadAttention)是Transformer模型中的关键组件,广泛用于自然语言处理(NLP)任务中。它允许模型在不同的子空间中并行地关注输入序列的不同部分,从而提高了模型的表达能力。在本文中,我们将详细介绍如何在Jav
- DeepSeek 赋能教育教学:开启智能教育的无限可能
AI_DL_CODE
人工智能深度学习辅助决策DeepSeek
摘要:本文深入探讨了DeepSeek在教育教学岗的应用。它能助力教师快速生成教学课件,整合丰富素材,简化制作流程;依据课程大纲设计在线课程内容,规划模块、设计互动;通过分析多维度学习数据,为学生提供个性化辅导建议和学习计划;利用自然语言处理等技术辅助作业批改和答疑解惑。使用时需注意数据质量与隐私保护、结合教师专业判断及持续学习探索功能。DeepSeek为教育教学带来变革,提升效率和质量,推动个性化
- DeepSeek 深度赋能客服岗:效率与洞察的双重飞跃
AI_DL_CODE
人工智能深度学习DeepSeek工作助理
摘要:本文聚焦于DeepSeek在客服服务岗的应用。它能凭借自然语言处理技术,快速理解客户咨询,精准提供解答方案;自动生成标准化、个性化的回复话术,大幅提升客服效率;利用机器学习对客户反馈进行深度分析,挖掘潜在需求与市场趋势。通过电商、互联网服务等行业案例,展现其实际成效。使用时需注意数据质量与隐私保护,促进与人工客服协同配合,持续优化学习。DeepSeek为客服工作带来变革,助力企业提升服务质量
- Transformer大模型实战 教师 学生架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer大模型实战教师学生架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来近年来,随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。其中,Transformer模型作为一种基于自注意力机制的深度神经网络结构,因其优越的性能和灵活的适用性,在NLP任务中得到了广泛应用。然而,Trans
- 如何在Java中设计高效的Transformer模型架构
省赚客app开发者
javatransformer架构
如何在Java中设计高效的Transformer模型架构大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!Transformer模型自从2017年提出以来,凭借其出色的性能和灵活性,在自然语言处理(NLP)和其他领域取得了显著的成功。Transformer的核心在于其自注意力机制和位置编码,它使得模型能够处理长距离依赖,并有效地进行序列到序列的转换。本文将介绍如何在Ja
- 基于大模型的 SDL 需求阶段安全需求挖掘实战指南 —— 四步法实现从业务需求到风险矩阵的智能转换
大F的智能小课
大模型理论和实战人工智能语言模型算法安全
在软件开发生命周期(SDL)中,需求阶段的安全需求挖掘至关重要,它直接影响到软件的安全性和可靠性。随着大模型技术的发展,我们可以利用其强大的自然语言处理和知识图谱能力,实现从业务需求到风险矩阵的智能转换。本文将介绍一种基于大模型的四步法,帮助安全团队高效挖掘安全需求。一、业务需求解析:大模型驱动的语义理解目标:将自然语言描述的业务需求转化为结构化安全要素。方法:需求文本预处理:使用大模型(如GPT
- RAG+LLM和直接将整理的知识训练到模型中去有什么区别,各自有什么优缺点
MonkeyKing.sun
RAG+LLM训练模型
1.RAG(Retrieval-AugmentedGeneration)+LLM(LargeLanguageModel)概念RAG是将信息检索与生成模型相结合的一种方法。具体来说,RAG会从一个知识库(如数据库、文档库、向量数据库等)中检索相关的信息片段或条目,然后将这些信息与输入的查询一起传递给一个生成模型(如GPT、T5、BERT等)进行回答生成。这个过程通常包括以下步骤:检索:从一个知识库中
- 金融大模型应用的机遇与挑战
Python程序员罗宾
金融人工智能语言模型数据库自然语言处理
大模型本质特征大模型通常指大语言模型(LargeLanguageModel,LLM),是基于深度学习算法的自然语言处理技术,是通用大模型。大模型也在从单一自然语言处理模态向语音、图像等多模态大模型演进。目前国内外推出了众多的大模型,国内就不下上百款,也因此被称为“百模大战”或“千模大战”。但很多所谓的“大模型”仅是叫“大模型”而已,不管参数量多少,都不能称为真正的大模型。参数量是大模型的一个特征,
- DeepSeek vs ChatGPT:AI 领域的华山论剑,谁主沉浮?
晨陌y
chatgpt人工智能
一、引言在当今科技飞速发展的时代,人工智能(AI)已然成为推动各领域变革的核心力量。而在人工智能的众多分支中,自然语言处理(NLP)因其与人类日常交流和信息处理的紧密联系,成为了最受瞩目的领域之一。在这片充满创新与突破的领域里,DeepSeek和ChatGPT犹如两颗璀璨的明星,吸引着全球开发者、研究人员以及广大普通用户的目光。它们代表着当前AI语言模型的顶尖水准,一场关于“谁主沉浮”的激烈较量正
- GPU与FPGA加速:硬件赋能AI应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
GPU与FPGA加速:硬件赋能AI应用1.背景介绍1.1人工智能的兴起人工智能(AI)在过去几年中经历了爆炸式增长,成为推动科技创新的核心动力。从语音识别和计算机视觉,到自然语言处理和推荐系统,AI已广泛应用于各个领域。然而,训练和部署AI模型需要大量计算资源,这对传统的CPU架构提出了巨大挑战。1.2硬件加速的必要性为满足AI算法对计算能力的巨大需求,硬件加速技术应运而生。专用硬件如GPU(图形
- 如何在 Hugging Face 上下载和使用模型—全面指南
Hello.Reader
人工智能python语言运维人工智能机器学习ai
1.引言在自然语言处理(NLP)领域,HuggingFace已成为一个不可忽视的平台。无论你是从事学术研究还是在工业中应用NLP技术,HuggingFace都为你提供了丰富的预训练模型和工具库,这些资源大大加速了NLP任务的开发和部署。HuggingFace提供的模型库涵盖了从文本分类到文本生成、从机器翻译到问答系统等各种NLP任务。这些模型大多是由社区贡献并经过大规模数据训练的,使用它们可以帮助
- 微软Copilot官网入口- Copilot中文版国内使用入口
人工智能
微软Copilot:你的AI副驾驶,赋能未来工作与生活✨在数字化浪潮席卷全球的今天,效率和创造力已成为个人和企业成功的关键驱动力。微软Copilot应运而生,它不仅仅是一款软件,更像是一位人工智能副驾驶,旨在通过强大的AI技术,解放你的双手,激发你的灵感,助你驰骋于工作和生活的各个领域。核心功能:不止于智能,更在于赋能微软Copilot的核心在于其对自然语言处理(NLP)和机器学习(ML)的深度融
- GPT和BERT的异同
彬彬侠
自然语言处理gptbertTransformer解码器编码器NLP自然语言处理
GPT(GenerativePre-trainedTransformer)和BERT(BidirectionalEncoderRepresentationsfromTransformers)都是基于Transformer架构的语言模型,但它们的设计理念、使用的Transformer部分、训练方式、目标任务等方面有显著的不同。以下是它们的异同点:1.基本架构与模型设计GPT:使用的Transform
- 国内怎样使用claude?亲测有效的使用方法来了!新手必备
claude
隆重推出:革新体验的AI助手–claude告别笨拙的AI,迎接Anthropic公司倾力打造的新一代AI助手——克劳德(Claude)!它不仅拥有令人惊叹的自然语言处理能力,更兼具卓越的上下文理解和无与伦比的安全性,正以迅雷不及掩耳之势席卷全球AI领域!克劳德的目标很简单:成为更安全、更友好、更可靠的AI系统。而这一切,都归功于Anthropic对AI安全性的精益求精,以及其独树一帜的“宪法式AI
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- 大语言模型架构:从基础到进阶,如何理解和演变
运维小子
语言模型人工智能python
引言你可能听说过像ChatGPT这样的AI模型,它们能够理解并生成自然语言文本。这些模型的背后有着复杂的架构和技术,但如果你了解这些架构,就能明白它们是如何工作的。今天,我们将用简单的语言,逐步介绍大语言模型的架构,并且展示这些架构是如何随着时间演变的。1.大语言模型架构概述大语言模型(例如GPT、BERT、T5)是基于神经网络的计算模型,它们通过分析大量文本数据,学习语言的结构和规律。语言模型的
- 如何将DeepSeek集成到自己的项目中:从入门到精通
木觞清
人工智能
引言DeepSeek作为一款强大的深度学习平台,正在为开发者提供高效、灵活的AI解决方案。无论你是想构建一个图像分类系统,还是开发一个自然语言处理应用,DeepSeek都能帮助你快速实现目标。本文将详细介绍如何将DeepSeek集成到自己的项目中,并提供丰富的资源和示例代码,帮助你从入门到精通。为什么选择DeepSeek?在开始集成之前,我们先来看看DeepSeek的优势:高效的计算能力:支持GP
- AI趋势下,软件测试工程师怎么拥抱AI
悠然的笔记本
人工智能
在AI趋势下,软件测试工程师怎么拥抱AI呢?以下是我的一些思考:一、掌握AI基础知识软件测试工程师需要学习机器学习、深度学习、自然语言处理等领域的基本原理和算法。这些基础知识有助于理解AI在测试中的应用基础,从而能够更好地利用AI技术提升测试效率和质量。二、掌握AI相关工具和技术编程语言:学习使用Python等编程语言,这是实现AI应用的常用工具之一。框架:掌握TensorFlow、PyTorch
- Vgg 改进:添加EMA注意力机制高效提升跨空间学习
听风吹等浪起
AI改进系列学习人工智能计算机视觉深度学习
目录1.EMAAttention模块2.vgg改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.EMAAttention模块EMA(ExponentialMovingAverage,指数移动平均)注意力机制是一种结合了指数移动平均和注意力机制的模型,旨在通过引入时间序列的平滑特性来增强注意力机制的效果。它常用于处理序列数据(如自然语言处理、时间序列
- 巧用 PasteMate,联合 DeepSeek 与 LaTeX 高效生成 PDF 文档
邢树军
pdf
在信息爆炸的时代,学术研究、技术写作等工作常常需要快速搜集信息并将其整理成规范的文档格式。PasteMate作为一款强大的复制粘贴工具,与前沿的AI模型DeepSeek以及专业排版系统LaTeX相结合,能为我们提供高效且便捷的信息处理与文档生成方案。PasteMate官网:PasteMate一、借助DeepSeek极速搜集信息DeepSeek作为先进的AI工具,具备强大的自然语言处理能力和信息检索
- 《AI与NLP:开启元宇宙社交互动新纪元》
人工智能深度学习
在科技飞速发展的当下,元宇宙正从概念逐步走向现实,成为人们关注的焦点。而在元宇宙诸多令人瞩目的特性中,社交互动体验是其核心魅力之一。人工智能(AI)与自然语言处理(NLP)技术的迅猛发展,为元宇宙社交互动带来了前所未有的变革与提升,深刻地影响着用户在虚拟世界中的社交方式与体验。自然语言交互,打破沟通壁垒在早期的元宇宙雏形中,用户与虚拟环境、其他用户的交互多依赖于简单的指令输入或有限的动作操作,这种
- 使用LlamaIndex进行Token计数的实战指南
llzwxh888
自然语言处理人工智能python
在人工智能领域,特别是在自然语言处理(NLP)任务中,理解和跟踪Token的使用情况是非常重要的。这篇文章将介绍如何使用LlamaIndex库来进行Token计数,并提供一些实用的代码示例,以便你在自己的项目中应用这些技术。环境设置首先,我们需要设置回调和服务上下文。通过全局设置,我们可以在不需要每次查询时都传递这些设置的情况下使用它们。importosos.environ["OPENAI_API
- python自然语言处理—Word2vec模型之Skip-gram
诗雨时
python
Word2vec模型之Skip-gram(跳字)模型一、skip-gram模型图二、skip-gram模型图示例说明举个例子来说明这个图在干嘛:1、假设我们的文本序列有五个词,["the","man","loves","his","son"]。2、假设我们的窗口大小为skip-window=2,中心词为"loves",那么上下文的词即为:"the"、"man"、"his"、"son"。这里的上下文
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#1413161683@qq.com (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默