- 最小二乘法(OLS)python 实践
参考链接:1,基本原理:https://zhuanlan.zhihu.com/p/1492809412,python实现:https://zhuanlan.zhihu.com/p/22692029实现结果线性回归:#--coding:utf-8--#简单线性回归demoimportnumpyasnpimportmatplotlib.pyplotaspltimportstatsmodels.apia
- Open3D 点到面的ICP配准算法
AtlasCloud
python点云数据处理算法人工智能python矩阵numpy
目录一、算法原理1、算法概述2、点到平面ICP精配准3、参考文献二、主要函数三、代码实现四、结果展示1、初始位置2、配准结果一、算法原理1、算法概述 点到平面度量通常使用标准非线性最小二乘法来求解,例如Levenberg-Marquardt。点到平面ICP算法的每次迭代通常比点到点算法慢,但收敛速度明显更快。两个点云之间的相对旋转小于30°,在旋转矩阵中用θ替换sinθ,用1替换cosθ实现用线
- 贝叶斯回归:从概率视角量化预测的不确定性
大千AI助手
人工智能Python#OTHER回归数据挖掘人工智能机器学习算法贝叶斯
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!贝叶斯方法在回归问题中的应用被称为贝叶斯回归(BayesianRegression)。与传统频率派的线性回归(如最小二乘法)不同,贝叶斯回归的核心思想是:将回归参数(如权重系数)视为随机变量,通过贝叶斯定理结合先验分布和观测数据,推导出参数的后验分布,
- 【零基础学AI】 第10讲:线性回归
1989
0基础学AI人工智能线性回归算法python回归numpy开源
本节课你将学到理解线性回归的原理和应用场景掌握最小二乘法的基本思想使用Python构建房价预测模型学会评估回归模型的性能指标开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseabornnumpy前置知识第9讲:机器学习概述基本的Python和数据处理能力核心概念什么是
- open3d 点云拟合圆 mesh
扶子
python点云处理numpypythonopen3d经验分享点云拟合圆mesh
1、功能介绍:使用numpy和open3d进行二维圆拟合与三维可视化的完整示例。主要功能是对带有噪声的二维点云数据进行最小二乘法圆拟合,并使用open3d创建三角网格来可视化拟合出的圆形区域。2、代码部分:importnumpyasnpimportopen3daso3d#参数设置radius=5.0#圆的半径center=[0,0]#圆心num_points=200#点的数量noise_level
- 【GNSS原理】【最小二乘法】Chapter.5 GNSS定位算法——LS和WLS方法 [2025年4月]
牵星术小白
GNSS原理算法最小二乘法机器学习c++
Chapter.5GNSS定位算法——LS和WLS方法作者:齐花Guyc(CAUC)文章目录Chapter.5GNSS定位算法——LS和WLS方法一、引言二、LS方法三、WLS方法四、GNSSPVT解算流程中的LS和WLS一、引言在GNSS定位中,最小二乘法是一种核心算法,用于根据接收机获取的观测数据(如伪距、载波相位等)估算用户的位置、速度和时间偏差(PVT解算)。二、LS方法最小二乘法的核心是
- 最小二乘法的理论推导
士兵突击许三多
最小二乘法最小二乘法
最小二乘法的理论推导最小二乘法是一种通过最小化误差平方和来估计模型参数的方法。下面我将详细推导线性最小二乘法的理论过程,并给出相应的LaTeX公式。问题描述给定一组观测数据点(xi,yi),i=1,2,...,n(x_i,y_i),i=1,2,...,n(xi,yi),i=1,2,...,n,我们希望找到线性模型:y=ax+by=ax+by=ax+b使得模型预测值与实际观测值之间的误差平方和最小。
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 最小二乘法
superdont
计算机视觉入门最小二乘法算法机器学习matlab矩阵人工智能计算机视觉
最小二乘法(LeastSquaresMethod)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。具体来说,它可以用于线性回归分析,即找到一条最佳拟合直线(或更一般的曲线或面),使得实际观察数据点到这条直线(或曲线/面)的垂直距离(也就是误差)的平方和达到最小。在数学表示上,如果有一组观测数据集((x_i,y_i)),其中(i=1,2,…,n),最小二乘法旨在找到一个模型(y=
- 最小二乘法算法(个人总结版)
爱吃辣椒的年糕
算法使用深度学习算法人工智能fpga开发信息与通信最小二乘法随笔
最小二乘法(LeastSquaresMethod)是一种通过最小化误差平方和来拟合数据的回归分析方法。它被广泛应用于线性回归、多元回归以及其他数据拟合问题中。以下是详细的教程,涵盖基本概念、数学推导、具体步骤和实现代码。1.最小二乘法基本概念最小二乘法是一种用于数据拟合的统计方法,通过最小化观测数据与模型预测值之间的误差平方和,求解模型参数。2.线性回归的最小二乘法线性回归是最简单的最小二乘法应用
- 最小二乘法,正则推导
若曦爹
https://blog.csdn.net/qq_40061206/article/details/112447541
- Blind Image Deblurring with Outlier Handling论文阅读
青铜锁00
论文阅读#退化论文阅读图像处理
BlindImageDeblurringwithOutlierHandling1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文提出的新方法、公式及优势2.1新思路与核心模型框架2.2鲁棒数据保真项的定义与数学特性2.3优化方法:迭代重加权最小二乘法(IRLS)2.3.1潜像估计xxx2.3.2模糊核估计kkk2.3.3权重机制的意义2.4与传统方法的对比与优势2.5非
- 白平衡校正中冯・克里兹参数计算过程详解
大熊背
ISP基础算法计算机视觉算法人工智能白平衡校正
目录一、概述二、算法详解算法核心逻辑初始化与数据结构迭代匹配过程鲁棒性设计三、算法的简化版实例步骤1:构造直方图步骤2:计算点对(x,y)步骤3:最小二乘法拟合直线结果解释关键原理总结一、概述博文基于直方图的冯・克里斯特映射白平衡校正讲解方法比较杂乱,本博文是针对基于直方图的冯・克里斯特映射白平衡校正博文的进一步详细的解答,参考相关论文:《IlluminantChangeEstimationvia
- Eigen 库实现最小二乘算法(Least Squares)
点云SLAM
算法算法Eigen数据工具库最小二乘算法SVD分解QR分解超定方程高斯-牛顿法
一、最小二乘法基本原理给定一个超定方程组Ax=bAx=bAx=b,当A∈Rm×n,m>nA\in\mathbb{R}^{m\timesn},m>nA∈Rm×n,m>n时,一般无法精确解出xxx。因此我们寻找一个使残差∥Ax−b∥22\|Ax-b\|_2^2∥Ax−b∥22最小的解。其解析解为:x=(ATA)−1ATbx=(A^TA)^{-1}A^Tbx=(ATA)−1ATb或者使用更稳定的方式:Q
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- 极大似然估计与机器学习
xsddys
机器学习人工智能
复习概统的时候突然发现好像极大似然估计MLE与机器学习的数据驱动非常相似,都是采样样本然后估计模型参数。貌似,后知后觉的才意识到极大似然估计就是机器学习有效的数学保证下面以拟合线性分布的最小二乘与分类问题为例推到以下如何从似然函数推导出MSE损失与交叉熵损失一、线性回归的最小二乘法1.概率模型设定假设数据由线性模型生成,且观测噪声服从正态分布:y=wTx+ϵ,ϵ∼N(0,σ2)y=\mathbf{
- Python 用 NumPy 实现简单的线性回归
Python编程之道
pythonnumpy线性回归ai
Python用NumPy实现简单的线性回归关键词:Python、NumPy、线性回归、机器学习、最小二乘法摘要:本文深入探讨了如何使用Python的NumPy库实现简单的线性回归。线性回归是机器学习中基础且重要的算法,在预测分析等领域有广泛应用。我们将从线性回归的核心概念入手,详细介绍其原理和架构,阐述核心算法的原理及具体操作步骤,并结合数学模型和公式进行深入讲解。通过实际的项目实战案例,展示如何
- 光流 | Matlab工具中的光流算法
单北斗SLAMer
OpticalFlow(光流)算法图像处理信息与通信matlab
在MATLAB中,光流算法用于估计图像序列中物体的运动。以下是详细解释及实现步骤:1.光流算法基础光流基于两个核心假设:亮度恒定:同一物体在连续帧中的像素亮度不变。微小运动:相邻帧之间的时间间隔短,物体运动幅度小。常见算法:Lucas-Kanade(局部方法):假设局部窗口内光流恒定,通过最小二乘法求解。Horn-Schunck(全局方法):引入全局平滑性约束,通过优化整体能量函数求解。Farne
- PCL 将点云投影到拟合平面
MelaCandy
PCL点云算法与实战案例平面3d计算机视觉c++算法
PCL点云算法汇总及实战案例汇总的目录地址链接:PCL点云算法与项目实战案例汇总(长期更新)一、概述点云投影到拟合平面是指将三维点云数据中的点投影到与其最接近的二维平面上。通过投影到平面,可以消除数据的高度变化或Z轴信息,使得点云数据在平面上更加集中和规整。这在点云简化、平面特征提取和2D视觉分析中非常有用。1.1原理平面拟合和投影的过程通常涉及以下几个步骤:1.平面拟合:使用最小二乘法拟合点云的
- 最小二乘法实现圆的拟合
#君#
笔记最小二乘法算法机器学习
示例1:#include#include#include#include//二维点结构体structPoint2D{doublex;doubley;};//圆结构体(结果容器)structCircle{Point2Dcenter;doubleradius;boolvalid=false;//拟合有效性标志};//最小二乘圆拟合核心算法CirclefitCircleLeastSquares(cons
- 线性回归算法解密:从基础到实战的完整指南
智能计算研究中心
其他
内容概要线性回归算法是统计学与机器学习中一种常用的预测方法,它的核心思想是通过学习输入特征与输出变量之间的关系,以便对未来的数据进行预测。本文将从线性回归的基本概念入手,逐步深入,帮助读者全面掌握这一算法。本文旨在为读者提供系统而清晰的线性回归知识框架,以便在实际应用中能够灵活运用。首先,我们将解释线性回归的数学原理,包括如何构建模型以及利用最小二乘法进行参数估计。接着,针对数据预处理与特征选择,
- 基于随机森林和Xgboost对肥胖风险的多类别预测
i阿极
机器学习机器学习案例XGBoot随机森林python
基于随机森林和Xgboost对肥胖风险的多类别预测作者:i阿极作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页如果觉得文章不错或能帮助到你学习,可以点赞收藏评论+关注哦!如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持专栏案例:机器学习案例机器学习(一):线性回归之最小二乘法机器学习(二):线性回归之梯度下降法机器
- 量化交易之数学与统计学基础2.3——线性代数与矩阵运算 | 线性方程组
灏瀚星空
回归最小二乘法数据挖掘python笔记开源信息可视化
量化交易之数学与统计学基础2.3——线性代数与矩阵运算|线性方程组第二部分:线性代数与矩阵运算第3节:线性方程组:多因子模型中的回归分析与最小二乘法求解一、引言在量化投资领域,多因子模型是解析资产收益率的核心工具之一。其核心假设是资产收益率由多个因子的线性组合驱动,而最小二乘法(OLS)作为求解线性回归参数的经典方法,为因子系数估计提供了理论支撑和实践工具。本文将深入解析多因子模型的线性方程组构建
- OpenCV 图形API(66)图像结构分析和形状描述符------将一条直线拟合到三维点集上函数fitLine3D()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述拟合一条直线到3D点集。该函数通过最小化∑iρ(ri)来将一条直线拟合到3D点集,其中ri是第i个点与直线之间的距离,ρ®是距离函数,可以是以下之一:DIST_L2ρ(r)=r2/2(最简单且最快的最小二乘法)\rho(r)=r^2/2\quad\text{(最简
- PCL学习:基于多项式平滑点云及法线估计的曲面重建
JoannaJuanCV
PCL学习
一.基于多项式平滑点云及法线估计的曲面重建本小节介绍基于移动最小二乘法(MLS)的法线估计、点云平滑和数据重采样。有时,测量较小的对象时会产生一些误差,这些误差所造成的不规则数据如果直接拿来曲面重建的话会使重建的曲面不光滑或者有漏洞。这些不规则很难用统计分析消除,所以为了建立完整的模型必须对表面进行平滑处理和漏洞修复。在不能进行额外扫描的情况下,我们可以通过对数据重采样来解决这一问题,重采样算法通
- 机器学习基础 - 回归模型之线性回归
yousuotu
面试题机器学习回归线性回归
机器学习:线性回归文章目录机器学习:线性回归1.线性回归1.简介2.线性回归如何训练?1.损失函数2.正规方程3.梯度下降法4.两种方法的比较2.岭回归岭回归与线性回归3.Lasso回归4.ElasticNet回归LWR-局部加权回归QA1.最小二乘法估计2.最小二乘法的几何解释3.从概率角度看最小二乘法4.推一下线性回归的反向传播5.什么时候使用岭回归?6.什么时候使用L1正则化?7.什么时候使
- 【MATLAB代码例程】AOA与TOA结合的高精度平面地位,适用于四个基站的情况,附完整的代码
MATLAB卡尔曼
MATLAB定位程序与详解matlab平面开发语言
本代码实现了一种基于到达角(AOA)和到达时间(TOA)的混合定位算法,适用于二维平面内移动或静止目标的定位。通过4个基站的协同测量,结合最小二乘法和几何解算,能够有效估计目标位置,并支持噪声模拟、误差分析和可视化输出。适用于室内定位、无人机导航、工业监测等场景。文章目录运行结果MATLAB源代码代码讲解算法原理技术亮点应用场景扩展性建议运行结果定位示意图:运行结果:MATLAB源代码%AOA与T
- TOA与AOA联合定位的高精度算法,三维、4个基站的情况,MATLAB例程,附完整代码
MATLAB卡尔曼
MATLAB定位程序与详解算法matlab开发语言
本代码实现了三维空间内目标的高精度定位,结合到达角(AOA)和到达时间(TOA)两种测量方法,通过4个基站的协同观测,利用最小二乘法解算目标位置。代码支持噪声模拟、误差分析及三维可视化,适用于无人机导航、室内定位等场景。订阅专栏后可获得完整代码文章目录运行结果MATLAB例程代码介绍算法原理技术亮点代码结构应用场景扩展建议运行结果运行结果:命令行输出截图:部分代码截图:
- 线性回归
进来有惊喜
线性回归机器学习回归
1、线性回归的简单介绍2.安装第三方库3、一元线性回归示例说明4、多元线性回归示例5.总结1.线性回归的介绍定义:线性回归是一种用于建立变量之间线性关系的统计模型,通过一个或多个自变量来预测一个因变量的值。原理:其核心原理是最小二乘法,即通过寻找一条直线(在一元线性回归中)或一个超平面(在多元线性回归中),使得数据点到这条直线或超平面的距离的平方和最小。这条直线或超平面就是对数据的最佳拟合。分类:
- MATLAB在非线性规划中的应用实践
一朵小小玫
MATLAB非线性规划最小二乘法遗传算法优化方法选择
MATLAB在非线性规划中的应用实践背景简介随着数学建模和计算技术的发展,非线性规划(Non-LinearProgramming,NLP)在工程和科学领域得到了广泛的应用。MATLAB作为一种强大的数学软件,提供了丰富的内置函数和工具箱,专门用于解决非线性规划问题。本文将探讨MATLAB在非线性规划中的应用,包括最小二乘曲线拟合、遗传算法的使用,以及如何根据问题类型选择合适的优化方法。最小二乘法与
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name