- Prometheus运维六 PromQL查询语言详解及操作
安顾里
Prometheus监控类大数据kubernetes运维linux
海阔凭鱼跃,天高任鸟飞Prometheus官网:https://prometheus.io/文章目录1.什么是PromQL?2.PromQL的基本使用2.1时间序列选择器2.1.1瞬时向量选择器2.2区间向量选择器2.2.1范围向量选择器2.2.2时间位移操作2.2.3使用聚合操作2.3标量和字符串3.PromQL操作符4.内置常用函数5.HTTPAPI操作PromQL6.使用建议1.什么是Pro
- Protobuf3语言指南
R-QWERT
数据结构化与序列化protobuf
定义一个消息类型指定字段类型分配标识号指定字段规则添加更多消息类型添加注释保留标识符(Reserved)从.proto文件生成了什么?标量数值类型默认值枚举使用其他消息类型导入定义使用proto2消息类型嵌套类型更新一个消息类型AnyOneof使用OneofOneof特性向后兼容性问题映射(Maps)向后兼容性问题包(Packages)包及名称的解析定义服务JSON映射选项自定义选项生成你的类英文
- 动手学深度学习(pytorch土堆)-02TensorBoard的使用
#include<菜鸡>
深度学习深度学习pytorch人工智能
1.可视化代码使用了torch.utils.tensorboard将数据记录到TensorBoard以便可视化。具体来说,它将标量数据记录到目录logs中,使用的是SummaryWriter类。代码分解如下:SummaryWriter("logs"):初始化一个TensorBoard的写入器,日志会保存到"logs"目录。writer.add_scalar("y=x",i,i):在循环的每一次迭代
- 【鼠鼠学AI代码合集#5】线性代数
鼠鼠龙年发大财
鼠鼠学AI系列代码合集人工智能线性代数机器学习
在前面的例子中,我们已经讨论了标量的概念,并展示了如何使用代码对标量进行基本的算术运算。接下来,我将进一步说明该过程,并解释每一步的实现。标量(Scalar)的基本操作标量是只有一个元素的数值。它可以是整数、浮点数等。通过下面的Python代码,我们可以很容易地进行标量的加法、乘法、除法和指数运算。代码实现:importtorch#定义两个标量x=torch.tensor(3.0)#标量x,值为3
- 实验九 游标操作和自定义函数
LANVNAL
一.实验目的:掌握游标的声明、游标打开、标数据的提取、游标的关闭和游标的释放掌握标量值函数的定义与调用掌握内联表值函数的定义与调用掌握多语句表值函数的定义与调用二.实验内容:(所有题写到实验报告中)1.使用游标打印OrderManagement库中各订单中的总金额,要求按总金额降序排,打印格式如下:2.使用游标提取学生课程库中3-105课的前三名学生的信息和后三名学生的信息,包括学号、姓名、课程名
- 向量的叉积、点积、外积
qq_27390023
pytorchpython深度学习
向量的叉积、点积和外积是向量代数中非常重要的操作,用于描述向量间的关系。它们广泛应用于物理、计算机图形学、几何以及蛋白质结构分析等领域。下面对每个运算进行详细介绍,并通过PyTorch示例代码展示其实现。1.点积(DotProduct)点积是两个向量之间的数量积,结果是一个标量。点积用于测量两个向量的平行性或相对角度。如果两个向量的点积为零,则它们互相垂直。其中,θ是两个向量之间的夹角。PyTor
- windows C++-并行编程-将使用缩减变量的 OpenMP 循环转换为使用并发运行时
sului
c++开发语言
此示例介绍如何将使用reduction子句的OpenMPparallelforloop转换为使用并发运行时。OpenMPreduction子句允许指定一个或多个线程专用变量,这些变量受并行区域末尾的缩减操作的约束。OpenMP预定义一组缩减运算符。每个减量变量必须是标量(例如int、long和float)。OpenMP还定义了一些限制,说明如何在并行区域中使用缩减变量。并行模式库(PPL)提供co
- 【MySQL】深圳大学数据库实验二
看未来捏
深大数据库数据库mysql
目录一、实验目的二、实验要求三、实验设备四、建议的实验步骤4.1EXERCISES5GROUPBY&HAVINGGROUPBY的用法HAVING的用法综合示例小结4.2EXERCISES6SUBQUERIES.1.标量子查询(ScalarSubquery)2.行子查询(RowSubquery)3.表子查询(TableSubquery)4.相关子查询(CorrelatedSubquery)5.非相关
- pyflink中UDTF和UDF的区别
吉小雨
pyflinkpyflink
UDTF(UserDefinedTable-ValuedFunctions)和UDF(UserDefinedFunctions)在Flink和其他数据处理系统中有着明显的区别,主要体现在以下几个方面:输出类型:UDF:UDF是用户定义的标量函数。它接收一个或多个标量值作为输入,并返回一个标量值作为输出。UDTF:UDTF是用户定义的表值函数。它接收一个或多个标量值作为输入,但可以返回多行数据(即多
- PyFlink自定义函数
吉小雨
pyflinkflink
在PyFlink(ApacheFlink的PythonAPI)中,自定义函数分为三种主要类型:ScalarFunction(标量函数)、TableFunction(表函数)和AggregateFunction(聚合函数)。这些自定义函数可以在Flink的SQL和TableAPI中使用,用于扩展PyFlink的内置功能,处理自定义的计算逻辑。1.安装PyFlink在开始之前,确保你的环境中已安装了P
- ARM SIMD instruction -- fcmpe
xiaozhiwise
Assembly汇编
FCMPEFloating-pointsignalingCompare(scalar).ThisinstructioncomparesthetwoSIMD&FPsourceregistervalues,orthefirstSIMD&FPsourceregistervalueandzero.ItwritestheresulttothePSTATE.{N,Z,C,V}flags.浮点数比较(标量)。此
- OpenGL中的向量、矩阵
辉辉岁月
向量了解向量之前,先了解什么是标量标量:只有大小,例如:1,12,13等向量是有方向的标量,即不仅有大小,还有方向单位向量单位向量是长度为1的向量,向量长度通过下列公式计算向量的模的计算如果一个向量不是单位向量,可以通过单位化将其转化为单位向量,即非零向量除以向量的模,如下图所示向量点乘点乘只能发生在两个向量之间点乘得到的是两个向量之间的夹角的余弦值即cosα,范围在[-1,1]之间,是一个标量O
- 计算物理精解【3】
叶绿先锋
理论物理与应用物理线性代数计算物理
文章目录力学单位矢量基础定义矢量加法矢量加法的几何方法矢量加法的代数方法示例注意事项矢量间的关系矢量(或向量)的标量积(也称为点积、内积或数量积)性质计算两矢量之间的夹角例子步骤数值结果计算两三维矢量之间夹角的例子例子步骤数值结果通过单位矢量计算标量积矢量(向量)的向量积(也称为叉积、外积或叉乘)性质如何计算矢量向量积示例例子步骤最终结果注意单位矢量性质示例应用矢量的位移定义计算公式性质应用示例参
- Rust 学习笔记 3:一般性编程概念
JiMoKuangXiangQu
Rustrust
上一篇:Rust学习笔记2:猜数字游戏文章目录1.前言2.背景3.Rust中的一般性编程概念3.1变量及其可变性(Mutability)3.1.1变量定义3.1.2常量3.1.3变量隐藏(Shadowing)3.2基本类型3.2.1标量(scalar)类型3.2.1.1整型(IntegerTypes)3.2.1.2浮点型(Floating-PointTypes)3.2.1.3数值运算(Numeri
- 【pytorch】TensorBoard的使用
hhhhhhkkkyyy
pytorch人工智能python
TensorBoardTensorBoard是TensorFlow提供的一个可视化工具,用于实时监控、调试和可视化深度学习模型的训练过程和性能指标。虽然它是为TensorFlow设计的,但也可以与其他深度学习框架(如PyTorch)一起使用。下面是一些关于TensorBoard的详细知识和使用方法:可视化功能:Scalars(标量):用于显示训练过程中的标量数据,比如损失和准确率的变化趋势。Gra
- pytorch中的nn.MSELoss()均方误差损失函数
AndrewPerfect
深度学习python基础pytorch基础pytorch人工智能python
一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量,表示两个张量之间的均方误差。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方
- TensorFlow 的基本概念和使用场景。
WangLinXX
学习tensorflow人工智能python
TensorFlow是由Google开发的开源机器学习框架,用于构建和训练各种机器学习模型。它基于数据流图的概念,其中节点表示数学操作,边表示多维数组(张量)的流动。TensorFlow的基本概念包括:1.张量(Tensors):在TensorFlow中,数据以张量的形式表示。它们是多维数组,可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。2.数据流图(DataFlowGraph)
- 昇思25天学习打卡
十分钟ll
昇思25天学习打卡pythonpytorch视觉检测图像处理
@[TOC]《昇思25天学习打卡营第02天|lulul》张量Tensor张量tensor是在机器学习和深度学习中广泛应用的数据概念,张量是多维数组的泛化,能够表示标量(0维张量)、向量(1维张量)、矩阵(2维张量)及更高维的数组。张量基本用法(mindspore)data=[1,0,1,0]x_data=Tensor(data)print(x_data,x_data.shape,x_data.dt
- 【Mysql数据库基础05】子查询 where、from、exists子查询、分页查询
失舵之舟-
#mysql基础数据库mysql数据库系统子查询分页查询where子查询from子查询
where、from、exists子查询、分页查询1where子查询1.1where后面的标量子查询1.1.1having后的标量子查询1.2where后面的列子查询1.3where后面的行子查询(了解即可)2from子查询3exists子查询(相关子查询)4分页查询5联合查询6练习1where子查询1.1where后面的标量子查询1.谁的工资比Abel高?select*fromemployees
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- 应用数学与机器学习基础 - 线性代数篇
绎岚科技
机器学习深度学习机器学习线性代数
线性代数1.标量、向量、矩阵、张量学习线性代数,会涉及以下几个数学概念:标量(scalar):定义:一个标量就是一个单数的数,不同于线性代数中大多数概念会涉及到多个数。表示法:我们用斜体表示标量。标量通常赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说”让s∈Rs\in\mathbb{R}s∈R表示一条线的斜率“;在定义自然数标量时,我们可能会说
- TensorFlow 的基本概念和使用场景
Envyᥫᩣ
tensorflow人工智能python
TensorFlow是一个开源的机器学习框架,由Google开发和维护。它允许开发者使用图形计算的方式构建和训练机器学习模型。TensorFlow的基本概念如下:张量(Tensor):TensorFlow使用张量来表示数据。张量是多维数组,在计算图中流动,是TensorFlow的基本数据单元。张量可以是标量(0维数组)、向量(1维数组)、矩阵(2维数组),或更高维度的数组。计算图(Computat
- 《利用Python进行数据分析》 附录 A.3 广播
CCC考研
附录A高阶NumpyA.3广播广播描述了算法如何在不同形状的数组之间进行运算。它是一个强大的功能,但可能会导致混淆,即使对于有经验的用户也是如此。1.最简单的广播示例发生在将标量值与数组组合的时候(见图A-1)图A-1:简单广播注:有关此操作的说明,请参见图A-2。对行进行减均值的广播需要更小心。幸运的是,只要遵循规则,就可以在数组的任何维度上对潜在较低维度值进行广播(例如从二维数组的每一列中减去
- Pytorch-张量基础操作
小森( ﹡ˆoˆ﹡ )
实战Pytorchpython人工智能tensorflow
张量张量是一个多维数组,它是标量、向量和矩阵概念的推广。在深度学习中,张量被广泛用于表示数据和模型参数。具体来说,张量的“张”可以理解为“维度”,张量的阶或维数称为秩。例如,零阶张量是一个标量,一阶张量是一个向量,二阶张量是一个矩阵,三阶及以上的张量则可以看作是高维数组。在不同的上下文中,张量的意义可能会有所不同:数据表示:在深度学习中,张量通常用于表示数据。例如,一幅RGB图像可以表示为一个三维
- mysql子查询
小冯爱编程
mysql数据库sql
文章目录一、什么是子查询?二、查询规范三、子查询分类四、四种子查询1.标量子查询2.单行子查询3.多行子查询4.表子查询一、什么是子查询?一个查询语句嵌套在另一个查询语句内部的查询。在实际应用中,有时候一个查询语句的条件需要另一个查询语句来获取。二、查询规范1.子查询必须放在小括号中2.子查询一般放在比较操作符的右边,以提高代码的可读性。3.子查询可以出现在几乎所有的SELECT子句中。(如:SE
- Python和MATLAB和R对比敏感度函数导图
亚图跨际
算法交叉知识Python对比度检测贝叶斯自适应估计空间观察对比量化视觉皮质对比敏感度模型眼球运动偏心率对比敏感度模型
要点深度学习网络两种选择的强制选择对比度检测贝叶斯自适应估计对比敏感度函数空间观察对比目标量化视觉皮质感知差异亮度、红/绿值、蓝/黄值色彩空间改变OpenCV图像对比度对比敏感度函数模型空间对比敏感度估计眼球运动医学研究空间时间颜色偏心率对比敏感度函数模型JavaScript人眼颜色对比差异sRGB:sRGB是一种三刺激色彩模型,是Web的标准,用于大多数计算机显示器。它使用与高清电视标准Rec7
- 密码学之椭圆曲线(ECC)
零 度°
密码学密码学python
1.椭圆曲线加密ECC概述1.1ECC定义与原理椭圆曲线密码学(ECC)是一种基于椭圆曲线数学的公钥密码体系,它利用了椭圆曲线上的点构成的阿贝尔群和相应的离散对数问题来实现加密和数字签名。ECC的安全性依赖于椭圆曲线离散对数问题(ECDLP)的难解性。在ECC中,首先需要选择一个椭圆曲线和一个基点,然后生成密钥对。私钥是一个随机整数,而公钥是这个随机整数与基点的标量乘积。ECC的加密过程包括选择一
- TensorFlow
weixin_63207763
算法
TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一个强大的工具集,用于构建和训练各种机器学习模型,包括神经网络模型。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据单位是张量,它是一个多维数组。张量可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。图(Graph):TensorFlow使用计算图来表示
- 深度学习pytorch——索引与切片
Echo-J
AI深度学习pytorch人工智能
indexingimporttorcha=torch.rand(4,3,28,28)#表示4张28*28的rgb图print(a[0].shape)#a[0]获得第一张图片print(a[0,0].shape)#a[0,0]获得第一张图片的r图print(a[0,0,2,4])#获得第一张图片第一个通道的一个像素点,因此得到的是一个标量selectfirst/lastN#selectfirst/l
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟