- 【深度学习入门:基于python的理论与实现读书笔记】第五章误差反向传播法
Bin二叉
深度学习python人工智能
目录摘要第五章误差反向传播法简单层的实现乘法层的实现加法层的实现激活函数层的实现ReLU层Sigmoid层Affine层和Softmax层的实现Affine层Softmax-with-Loss层误差反向传播法的实现摘要该文章简要介绍了神经网络的误差反向传播法,省去了大量的推理过程,重点讲述了神经网络误差反向传播法的代码实现。第五章误差反向传播法反向传播就是从后到前局部计算偏导数并将其与从上游传来的
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 神经网络常见激活函数 12-Swish函数
亲持红叶
神经网络常见激活函数神经网络机器学习人工智能
Swish函数+导函数Swish函数Swish(x)=x⋅σ(βx)=x1+e−βx\begin{aligned}\rmSwish(x)&=x\cdot\sigma(\betax)\\&=\frac{x}{1+e^{-\betax}}\end{aligned}Swish(x)=x⋅σ(βx)=1+e−βxxSwish函数导数ddxSwish=(x⋅σ(βx))′=σ(βx)+x⋅(σ(βx))′∵
- 动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)
lusterku
动手学深度学习深度学习笔记线性回归
动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)线性回归的从零开始实现生成数据集读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练练习1.如果我们将权重初始化为零,会发生什么。算法仍然有效吗?2.计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?3.为什么在`squared_loss`函数中需要使用`reshape`函数?4.尝试使用不同的学习率,观察损失函数值下
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- oracle怎么导入dmp数据,如何在oracle中导入dmp数据库文件
纳兰景钰
oracle怎么导入dmp数据
、Export/Import的用处OracleExport/Import工具用于在数据库之间传递数据。Export从数据库中导出数据到dump文件中Import从dump文件中到入数据导数据库中下面是一般使用他们的情况(1)、两个数据库之间传送数据同一个版本的oracleServer之间不同版本的oracleServer之间同种OS之间不同种OS之间(2)、用于数据库的备份和恢复(3)、从一个SC
- 【机器学习】嘿马机器学习(算法篇)第6篇:线性回归,学习目标【附代码文档】...
广江鹏
算法机器学习线性回归学习人工智能
本教程的知识点为:机器学习算法定位、K-近邻算法1.4k值的选择1K值选择说明1.6案例:鸢尾花种类预测–数据集介绍1案例:鸢尾花种类预测1.8案例:鸢尾花种类预测—流程实现1再识K-近邻算法API1.11案例2:预测facebook签到位置1项目描述线性回归2.3数学:求导1常见函数的导数线性回归2.5梯度下降方法介绍1详解梯度下降算法线性回归2.6线性回归api再介绍小结线性回归2.9正则化线
- 一阶系统和二阶系统
不知道是谁2
程序人生
一阶系统和二阶系统是动态系统分析中的两个基本概念,它们的主要区别在于系统的响应特性、阶次以及对输入信号的处理方式:1.**阶数**:-**一阶系统**:这类系统只有一个积分项,如常微分方程中的形式为dy/dt=k*x(t)+b,其中dy/dt表示状态变化率,k是增益系数,b可能是偏置。它的响应速度快,直接对输入做出反应。-**二阶系统**:有两个阶跃响应,通常包含一个导数项和一个积分项,如d^2y
- 静态路由和动态路由有什么区别?
田鑫科技
静态路由动态路由网络设备
静态路由和动态路由是网络中两种不同的路由配置方式,它们各自有特定的用途和适用场景。下面是两者的主要区别:静态路由(StaticRouting)定义:静态路由是由网络管理员手动配置的固定路径,用于指导数据包从一个网络到另一个网络的传输。优点:安全性:因为路由信息是手动设置的,所以可以更好地控制网络流量的走向,减少被恶意篡改的风险。简单性:对于小型或简单的网络,静态路由配置相对简单直接。缺点:维护成本
- C语言对各类复杂函数精确求导(在终端解析字符串并求导)
ChaoJihtl
算法c语言
目录为什么写?难点:对输入的任意函数字符串进行解析和计算具体用法:直接在终端输入函数即可代码完成思路:第一步:定义数据结构第二步:解析表达式第三步:求导第四步:简化表达式第五步:求值第六步:写main函数代码实现:见下文代码结束:感谢阅读!BUG鸣谢:鸣谢为什么写?1.网上我能找到的文献,对导数求导,大多数都是要在代码里面输入函数,或者自己要手动对自己的函数做一些处理,然后去用计算机施行,所以我想
- 如何构建架构蓝图,开启企业数字化转型的成功之路
AZone架构院
大数据人工智能数字化转型云计算微服务
一、从战略到落地,架构蓝图是企业数字化转型的核心驱动力在现代企业面临的竞争环境中,数字化转型已经成为企业提升竞争力、优化业务模式、以及获取新市场机会的关键手段。然而,数字化转型不仅仅是技术的引入或更新,它涉及到企业从战略规划到运营模式的全方位变革。如何构建一个既符合企业长期战略目标,又能够有效指导数字化实施的架构蓝图,成为企业在数字化转型中不可或缺的成功要素。架构蓝图通过对企业各个业务单元、资源、
- 机器学习数学基础:3.偏导数
@心都
机器学习数学基础机器学习人工智能
偏导数教程一、偏导数的引入在我们研究一元函数y=f(x)y=f(x)y=f(x)时,导数y′=f′(x)y^\prime=f^\prime(x)y′=f′(x)表示函数yyy关于xxx的变化率。然而,当我们遇到多元函数,例如二元函数z=f(x,y)z=f(x,y)z=f(x,y)时,情况变得更加复杂。我们可能会想知道函数zzz在xxx方向或yyy方向上的变化率,这就引入了偏导数的概念。二、偏导数的
- 机器学习数学基础:2.连续性与导数
@心都
机器学习数学基础机器学习概率论人工智能
函数连续性、瞬时速度、导数相关知识一、函数连续性(一)函数在某点连续的条件有定义:函数在点x0x_0x0处要有明确、确定的值f(x0)f(x_0)f(x0)。例如,f(x)=1xf(x)=\frac{1}{x}f(x)=x1在x=0x=0x=0处无定义,不满足此条件,所以在x=0x=0x=0处不连续。极限存在:当xxx从x0x_0x0左侧(x→x0−x\tox_0^{-}x→x0−)和右侧(x→x
- Word中MathType公式导数符号不显示
Xingmeng@
MathTypewordMathType导数符号点不显示
最近在Word中用MathType插入公式,发现不显示导数符号,查阅资料后发现可能是字体问题,修改如下字体格式可以恢复正常。导数符号采用如下方式插入。具体操作步骤为:样式-数学附加-选择MTExtraTiger字体。
- Neo4j -admin方式导数
minantadd
neo4j
Neo4j的导数方式有多种,想看详细对比请参见:https://mp.weixin.qq.com/s/ZYqDSx333nTCYBpHydfYMg以前用过Cypherloadcsv,用Java写的导入工具Jar,那速度慢的可以,这里就不再推荐了。前不久改用neo4j-admin方式,速度有明显的提升。下面就介绍下Neo4j-admin的用法。保证neo4j为停止状态。切换到neo4j安装目录的bi
- 深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块
nnerddboy
白话机器学习深度学习人工智能
一、梯度消失梯度消失的根本原因在于激活函数的性质和链式法则的计算:激活函数的导数很小:常见的激活函数(例如Sigmoid和Tanh)在输入较大或较小时,输出趋于饱和(Sigmoid的输出趋于0或1),其导数接近于0。在反向传播中,每一层的梯度都会乘以激活函数的导数。如果导数很小,乘积就会导致梯度逐渐变小。链式法则的多次相乘:假设网络有nn层,梯度从输出层传到第ii层时,会经历多次链式相乘:如果每一
- 如何利用Python函数求导数?Python函数求导数的方法
程序员二飞
python人工智能开发语言
导数也叫导函数值,又名微商,是微积分中的重要基础概念。今天这篇文章主要是有关利用Python函数来进行导数的求取,给大家介绍了几种Python函数求导数的方法,感兴趣的小伙伴一起来看看吧。想要使用Python函数求导数,首先要打开Python的运行环境,然后打开一个求取导数的模块包,使用它进行求导的求取方法如下:1、首先我们要打开Python运行环境在运行窗口中,输入cmd命令,进入到命令行窗口中
- python函数求导_python怎么实现函数求导
weixin_39521068
python函数求导
python实现函数求导的方法是:1、利用sympy库中的symbols方法传入x和y变量;2、利用sympy库中的diff函数传入需要求导的函数即可返回求导之后的结果。python利用sympy库对某个函数求导,numpy库使用该求导结果计算的程序在python数据处理过程中,我们经常会遇见这样一种情况。需要对一个函数表达式求偏导,并将具体数值代入导数式。而python中通常可用于函数求导的函数
- python 求导实现_python – NumPy中的Softmax导数接近0(实现)
非凡运营笔记
python求导实现
这是如何以更加矢量化的numpy方式计算softmax函数的导数的答案.然而,偏导数逼近零的事实可能不是数学问题,并且只是学习率或复杂深度神经网络的已知死亡权重问题.像ReLU这样的图层有助于防止后一问题.首先,我使用了以下信号(仅复制您的上一个条目),使其成为4个样本x3个特征,因此更容易看到尺寸发生了什么.>>>signal=[[0.3394572666491664,0.30890680539
- 【sympy】用python的库 sympy 求导数
kt4ngw
pythonpythonsympy求导数
diff(f,x)diff(f,x)diff(f,x)求导数可引入求微分方程sympy求微分方程.(点击可跳转)1.一阶导数基本格式print(diff(f,x))#f为所求导函数,x为对x进行求导例:求该函数的导数f(x)=cos(x)f(x)=cos(x)f(x)=cos(x)程序,如下fromsympyimport*x=symbols('x')print(diff(cos(x),x))结果:
- 使用Python函数计算导数
NoABug
python开发语言Python
导数是微积分中一个重要的概念,它可以描述函数在给定点的变化率。在Python中,我们可以使用各种数值计算库来计算导数。本文将介绍如何使用Python函数来计算导数,并提供相应的源代码。首先,我们需要导入相关的数值计算库。其中,最常用的库是NumPy,它提供了许多数值计算的功能。importnumpyasnp接下来,我们定义一个函数,例如:deff(x):returnx**2+
- 深度学习过程是什么
小松要进步
李哥深度学习深度学习
问:深度学习是:一组原始数据,经过线性变换、非线性变换、偏差加和等操作后得到一组预测数据,再根据损失函数计算预测数据和原始数据的差值,用差值数据对权重和偏差求偏导,这里的偏导数的值也就是使得损失减小的最佳方向,然后根据偏导数的方向和步长更新权重和偏差,对吗答:您的描述大致正确,但有一些细节需要澄清和修正,以更准确地反映深度学习中模型训练的过程。以下是详细的解释:1.原始数据处理:一组原始数据首先通
- OpenCV 功能函数介绍 (二)
ኈ ቼ ዽ
人工智能算法
一,梯度处理的sobel算子函数功能:用于计算图像梯度(gradient)的函数参数:cv2.Sobel(src,ddepth,dx,dy,ksize=3,scale=1,delta=0,borderType=None)cv2.Sobel(输入图像,应该是灰度化后的图像输出图像的所需深度,:-1来表示与输入图像相同的深度x方向上的导数阶数,如果你想要计算x方向上的梯度,设置这个参数为1;如果你不关
- python3+TensorFlow 2.x(四)反向传播
刀客123
python学习tensorflow人工智能python
目录反向传播算法反向传播算法基本步骤:反向中的参数变化总结反向传播算法反向传播算法(Backpropagation)是训练人工神经网络时使用的一个重要算法,它是通过计算梯度并优化神经网络的权重来最小化误差。反向传播算法的核心是基于链式法则的梯度下降优化方法,通过计算误差对每个权重的偏导数来更新网络中的参数。反向传播算法基本步骤:前向传播:将输入数据传递通过神经网络的各层,计算每一层的输出。计算损失
- Python中opencv的一些函数及应用
灵封~
pythonopencv开发语言
Sobel算子函数功能:Sobel算子用于计算图像的梯度(变化率),常用于边缘检测。它通过对图像应用一个基于一阶导数的滤波器来强调图像中的边缘部分,特别是水平和垂直方向上的边缘。通过计算图像的梯度,可以获得图像中亮度变化较大的地方,这些地方通常是物体的边界。Sobel算子有两个方向的变体:SobelX:计算水平方向的梯度。SobelY:计算垂直方向的梯度。Sobel算子函数:cv2.Sobel()
- OpenCV相关函数
〖是♂我〗
opencv计算机视觉图像处理
一、Sobel算子函数(cv2.Sobel)功能Sobel算子是一个梯度算子,用于边缘检测。通过计算图像中像素的梯度,Sobel算子可以检测出水平和垂直方向上的边缘。参数src:输入图像。ddepth:输出图像的深度(如cv2.CV_8U,cv2.CV_64F)。一般为cv2.CV_8U(8位无符号整数)或cv2.CV_64F(64位浮动数)。dx:计算导数的x方向阶数,dx=1表示计算x方向的导
- 03-19-多元函数-雅可比矩阵
草莓奶忻
人工智能数学基础矩阵线性代数
文章目录课程地址1.雅可比矩阵的定义2.雅可比矩阵与线性变换2.1示例12.2示例22.3示例33.泰勒展开与雅可比矩阵4.总结示例"示例1"中的JFJ_FJF1.函数定义2.雅可比矩阵的定义3.逐项计算偏导数4.构建雅可比矩阵5.几何意义6.小结课程地址03-19-多元函数-雅可比矩阵从这张图中可以看出,这里讲解了雅可比矩阵JFJ_FJF的定义、组成以及在线性变换和泰勒展开中的应用。下面逐部分解
- 数学基础 -- 泰勒展开式
sz66cm
高等数学导数微积分
泰勒展开泰勒展开是将一个函数在某点附近展开成幂级数的工具。具体来说,对于一个在某点aaa处具有nnn阶导数的函数f(x)f(x)f(x),其泰勒展开式为:f(x)=f(a)+f′(a)(x−a)+f′′(a)2!(x−a)2+f′′′(a)3!(x−a)3+⋯+f(n)(a)n!(x−a)n+Rn(x)f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\f
- 微积分公式大全
.NET跨平台
书籍微积分
在微积分的进阶学习中,会涉及许多更加复杂和深奥的公式与定理。以下是一些常见的复杂公式和定理,涵盖了多变量微积分、无穷级数、积分变换、极限等方面:1.多变量微积分偏导数和梯度偏导数:∂∂xf(x,y,z)\frac{\partial}{\partialx}f(x,y,z)∂x∂f(x,y,z)是函数f(x,y,z)f(x,y,z)f(x,y,z)对变量xxx的偏导数。梯度(Gradient):∇f=
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓