语雀地址(全部内容)
图片如有侵权,请联系,立刻删
程序为何会发生崩溃
为什么会发生崩溃呢,这个是从安全方面来考虑的,当我们的系统发现我们的程序出现异常了,为了防止继续错下去,就中止了我们的程序,这个中止的体现就是崩溃。
打个比方,比如苹果很注重个人隐私(起码表面上看来是这样子),如果你在没有用户授权的情况下,强行调用摄像头的代码,就让你崩溃了,如果不崩溃那恶意程序是不是随时给你拍照。
但是系统也不是那么冷血无情,说崩就崩,它还是秉承尽可能让进程执行下去的原则的,比如在某些时候,执行不了某个指令,这时候就会返回一个error给进程,如果进程可以处理,那就不崩。那如果进程不接受返回值呢?那么就通过信号告知进程,如果这时候进程还是可以处理,那也不会崩。
崩溃的类型
说到这里可以知道,发生崩溃有2个地方,一个是系统触发的崩溃,一个是自己编写的程序触发崩溃
系统触发的崩溃一般是指操作系统,自己写的程序不一定是自己调用NSException,也可能是OC调用的,比如数组越界
但是之前定义的系统触发的崩溃不叫系统崩溃,叫硬件异常,可能是因为和硬件有关吧,比如:执行当前计算机模式下不允许的指令、除以 0等情况
而硬件异常会转化为Mach异常,Mach异常会转化为UNIX信号,关系如下
为何要监听多处异常
从图里可以看到,所有的异常都会汇总到signal信号这里,那是不是我们只要监听signal信号就可以了呢?其实不然。我们的程序异常是通过NSUncaughtExceptionHandler函数来捕获的,而Crash的报告需要通过这个handler 来获取异常相关信息和堆栈。
那为什么还要监听Mach崩溃呢?
有两个原因:
不是所有的 "Mach异常” 类型都映射到了 “UNIX信号”。 如 EXC_GUARD 。
“UNIX信号” 在崩溃线程回调,如果遇到 Stackoverflow 问题,已经没有条件(栈空间)再执行回调代码了。简单点来说,就是可能内存不够用了
按照上面的思路来看,只要在Mach、singal、用户程序处,监听异常的发生,在发生异常的时候,我们就可以获取到异常的相关信息了
核心架构 -- KScrash
腾讯开源的APM工具,其中部分功能是基于KScrash来实现的,所以我们也用KScrash来收集异常
异常的相关信息
在KSCrashDoctor的- (NSString) diagnoseCrash:(NSDictionary) report方法里,我们可以获取到收集到的异常相关信息
下面是我在子线程修改UI而触发崩溃的报告
其中system是记录用户操作系统、启动时间等信息,是自定义加进去的
report也是用户的一些信息
比较重要的是crash和binary_image
crash
crash主要有2部分内容,分别是error和threads
error
其中包含了mach异常的类型 signal的类型还有nsexception的类型与崩溃的原因
上面的是子线程操作UI,下面的是调用了未实现的方法、数组越界、类型错误(NSLog(@"%@", 1);)、访问野指针
可以看到,不同类型的崩溃,返回的信息都不一样
但mach、signal、type都会有值
threads
这个是崩溃时候,回溯堆栈的数组
po report[@"crash"][@"threads"][0]
{
backtrace = {
contents = (
{
"instruction_addr" = 7230210588;
"object_addr" = 7230132224;
"object_name" = "libsystem_malloc.dylib";
"symbol_addr" = 7230210540;
"symbol_name" = "malloc_size";
},
{
"instruction_addr" = 6962686124;
"object_addr" = 6962675712;
"object_name" = CoreFoundation;
"symbol_addr" = 6962685844;
"symbol_name" = "";
},
{
"instruction_addr" = 4368837244;
"object_addr" = 4368367616;
"object_name" = JPCrash;
"symbol_addr" = 4368836988;
"symbol_name" = blockRecordAsyncTrace;
},
{
"instruction_addr" = 4368835884;
"object_addr" = 4368367616;
"object_name" = JPCrash;
"symbol_addr" = 4368835772;
"symbol_name" = "warp_dispatch_async";
},
{
"instruction_addr" = 4368404096;
"object_addr" = 4368367616;
"object_name" = JPCrash;
"symbol_addr" = 4368403828;
"symbol_name" = "-[JPCrashEntity wildPointer]";
},
{
"instruction_addr" = 4368400316;
"object_addr" = 4368367616;
"object_name" = JPCrash;
"symbol_addr" = 4368400064;
"symbol_name" = "-[ViewController tableView:didSelectRowAtIndexPath:]";
},
{
"instruction_addr" = 7009785904;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7009784832;
"symbol_name" = "";
},
{
"instruction_addr" = 7009784792;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7009784680;
"symbol_name" = "";
},
{
"instruction_addr" = 7009786776;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7009786504;
"symbol_name" = "";
},
{
"instruction_addr" = 7012758852;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7012758780;
"symbol_name" = "";
},
{
"instruction_addr" = 7007678476;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7007678176;
"symbol_name" = "";
},
{
"instruction_addr" = 7007607200;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7007606996;
"symbol_name" = "";
},
{
"instruction_addr" = 7007820724;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7007820644;
"symbol_name" = "";
},
{
"instruction_addr" = 6963331928;
"object_addr" = 6962675712;
"object_name" = CoreFoundation;
"symbol_addr" = 6963331892;
"symbol_name" = "";
},
{
"instruction_addr" = 6963307972;
"object_addr" = 6962675712;
"object_name" = CoreFoundation;
"symbol_addr" = 6963307396;
"symbol_name" = "";
},
{
"instruction_addr" = 6963309428;
"object_addr" = 6962675712;
"object_name" = CoreFoundation;
"symbol_addr" = 6963308372;
"symbol_name" = "";
},
{
"instruction_addr" = 6963307036;
"object_addr" = 6962675712;
"object_name" = CoreFoundation;
"symbol_addr" = 6963306436;
"symbol_name" = CFRunLoopRunSpecific;
},
{
"instruction_addr" = 7361546116;
"object_addr" = 7361531904;
"object_name" = GraphicsServices;
"symbol_addr" = 7361545952;
"symbol_name" = GSEventRunModal;
},
{
"instruction_addr" = 7007612648;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7007611576;
"symbol_name" = "";
},
{
"instruction_addr" = 7007635292;
"object_addr" = 6995255296;
"object_name" = UIKitCore;
"symbol_addr" = 7007635124;
"symbol_name" = UIApplicationMain;
},
{
"instruction_addr" = 4368404912;
"object_addr" = 4368367616;
"object_name" = JPCrash;
"symbol_addr" = 4368404780;
"symbol_name" = main;
},
{
"instruction_addr" = 6959900336;
"object_addr" = 6959894528;
"object_name" = "libdyld.dylib";
"symbol_addr" = 6959900332;
"symbol_name" = "";
}
);
skipped = 0;
};
crashed = 0;
"current_thread" = 0;
index = 0;
registers = {
basic = {
cpsr = 1610612736;
fp = 6098510464;
lr = 2122639090221459628;
pc = 7230210588;
sp = 6098510416;
x0 = 0;
x1 = 104668372234960;
x10 = 10745377488;
x11 = 1323302912;
x12 = 271;
x13 = 1;
x14 = 103;
x15 = 92;
x16 = 7230210540;
x17 = 8554235480;
x18 = 0;
x19 = 10745377488;
x2 = 2;
x20 = 4;
x21 = 8623001600;
x22 = 10745377488;
x23 = "-8417212446817811928";
x24 = 10745376640;
x25 = 2912;
x26 = 4;
x27 = 10;
x28 = 1;
x29 = 6098510464;
x3 = 2301;
x4 = 25308;
x5 = 5086723200;
x6 = "-8417212641514943448";
x7 = 10749520752;
x8 = 5;
x9 = 13008;
};
};
}
可以里面包含了是否是当前线程、线程内容信息、线程的名字等
我们可以看一下他的contents
"current_thread":true,
"crashed":true,
"name":"",
"contents":[
{
"symbol_addr":6963877776,
"instruction_addr":6963877996,
"symbol_name":"",
"object_name":"CoreFoundation",
"object_addr":6962675712
},
{
"symbol_addr":7316302868,
"instruction_addr":7316302928,
"symbol_name":"objc_exception_throw",
"object_name":"libobjc.A.dylib",
"object_addr":7316275200
},
{
"symbol_addr":7319101544,
"instruction_addr":7319101960,
"symbol_name":"",
"object_name":"CoreAutoLayout",
"object_addr":7319035904
},
{
"symbol_addr":7319102660,
"instruction_addr":7319102696,
"symbol_name":"",
"object_name":"CoreAutoLayout",
"object_addr":7319035904
},
{
"symbol_addr":7012182528,
"instruction_addr":7012182744,
"symbol_name":"",
"object_name":"UIKitCore",
"object_addr":6995255296
},
{
"symbol_addr":7013081752,
"instruction_addr":7013081852,
"symbol_name":"",
"object_name":"UIKitCore",
"object_addr":6995255296
},
{
"symbol_addr":7013080808,
"instruction_addr":7013081616,
"symbol_name":"",
"object_name":"UIKitCore",
"object_addr":6995255296
},
{
"symbol_addr":7013072508,
"instruction_addr":7013072676,
"symbol_name":"",
"object_name":"UIKitCore",
"object_addr":6995255296
},
{
"symbol_addr":7013070780,
"instruction_addr":7013071168,
"symbol_name":"",
"object_name":"UIKitCore",
"object_addr":6995255296
},
{
"symbol_addr":4341135784,
"instruction_addr":4341135852,
"symbol_name":"__41-[ViewController changUIWithNoMainThread]_block_invoke",
"object_name":"JPCrash",
"object_addr":4341104640
},
{
"symbol_addr":4341574608,
"instruction_addr":4341574752,
"symbol_name":"__blockRecordAsyncTrace_block_invoke",
"object_name":"JPCrash",
"object_addr":4341104640
},
{
"symbol_addr":6959628844,
"instruction_addr":6959628876,
"symbol_name":"",
"object_name":"libdispatch.dylib",
"object_addr":6959620096
},
{
"symbol_addr":6959635868,
"instruction_addr":6959635888,
"symbol_name":"",
"object_name":"libdispatch.dylib",
"object_addr":6959620096
},
{
"symbol_addr":6959648652,
"instruction_addr":6959649068,
"symbol_name":"",
"object_name":"libdispatch.dylib",
"object_addr":6959620096
},
{
"symbol_addr":6959646212,
"instruction_addr":6959646804,
"symbol_name":"",
"object_name":"libdispatch.dylib",
"object_addr":6959620096
},
{
"symbol_addr":6959704024,
"instruction_addr":6959704380,
"symbol_name":"",
"object_name":"libdispatch.dylib",
"object_addr":6959620096
},
{
"symbol_addr":6959706284,
"instruction_addr":6959706400,
"symbol_name":"",
"object_name":"libdispatch.dylib",
"object_addr":6959620096
},
{
"symbol_addr":8233359104,
"instruction_addr":8233359320,
"symbol_name":"_pthread_wqthread",
"object_name":"libsystem_pthread.dylib",
"object_addr":8233345024
},
{
"symbol_addr":8233387876,
"instruction_addr":8233387884,
"symbol_name":"start_wqthread",
"object_name":"libsystem_pthread.dylib",
"object_addr":8233345024
}
],
"index":1
},
可以看到,第一个object_name为项目名字的字典里的symbol_name就记录引起崩溃的方法, "symbol_name":"__41-[ViewController changUIWithNoMainThread]_block_invoke",
object_addr记录了地址的偏移量
"object_addr":4341104640
symbol_name
在oc里方法名和文件名没有没有问题,在swift里文件名和方法名中间会有2个字符,这是因为swift的命名空间导致的
registers
这个字典的basic记录了寄存器信息
在上面的例子里,没有用到,但如果是系统库崩溃,这里的寄存器信息就有用到了,具体可以参考这边文章
手把手教你 Debug — iOS 14 ImageIO Crash 分析 https://juejin.cn/post/6964562873427165220
binary_image
包含了 crash 时,app 所加载的所有库
KSCrash源码分析
初始化
从GitHub里可以获取到初始化的代码
KSCrashInstallation install
我们可以先看看KSCrashInstallation的install的方法
然后去 KSCrash里查看
再查看kscrash_install
回调
回调的方法 onCrash
之前的监听器如果监听到有奔溃,都会走回到KSCrashC.c的onCrash方法里面
可以看到KSCrash_MonitorContext里面存储的就是奔溃的信息
KSCrash_MonitorContext -- 奔溃信息的model
里面记录了奔溃的ID,以及奔溃的类型,时间,奔溃的上下文等信息
阶段性小结
通过以上代码可以知道,流程是先注册监听器,然后有奔溃了就统一处理,下面对创建的几个类型的监听器代码进行分析
Mach 异常
初始化
实现监听的方法是 installExceptionHandler
bool installExceptionHandler()
{
KSLOG_DEBUG("Installing mach exception handler.");
bool attributes_created = false;
pthread_attr_t attr;
kern_return_t kr;
int error;
// 获取当前进程的 task
const task_t thisTask = mach_task_self();
exception_mask_t mask = EXC_MASK_BAD_ACCESS |
EXC_MASK_BAD_INSTRUCTION |
EXC_MASK_ARITHMETIC |
EXC_MASK_SOFTWARE |
EXC_MASK_BREAKPOINT;
//备份当前异常端口数据
KSLOG_DEBUG("Backing up original exception ports.");
kr = task_get_exception_ports(thisTask,
mask,
g_previousExceptionPorts.masks,
&g_previousExceptionPorts.count,
g_previousExceptionPorts.ports,
g_previousExceptionPorts.behaviors,
g_previousExceptionPorts.flavors);
if(kr != KERN_SUCCESS)
{
KSLOG_ERROR("task_get_exception_ports: %s", mach_error_string(kr));
goto failed;
}
//创建一个接受异常的接口
if(g_exceptionPort == MACH_PORT_NULL)
{
KSLOG_DEBUG("Allocating new port with receive rights.");
kr = mach_port_allocate(thisTask,
MACH_PORT_RIGHT_RECEIVE,
&g_exceptionPort);
if(kr != KERN_SUCCESS)
{
KSLOG_ERROR("mach_port_allocate: %s", mach_error_string(kr));
goto failed;
}
KSLOG_DEBUG("Adding send rights to port.");
kr = mach_port_insert_right(thisTask,
g_exceptionPort,
g_exceptionPort,
MACH_MSG_TYPE_MAKE_SEND);
if(kr != KERN_SUCCESS)
{
KSLOG_ERROR("mach_port_insert_right: %s", mach_error_string(kr));
goto failed;
}
}
//把接收异常的端口改为g_exceptionPort
KSLOG_DEBUG("Installing port as exception handler.");
kr = task_set_exception_ports(thisTask,
mask,
g_exceptionPort,
(int)(EXCEPTION_DEFAULT | MACH_EXCEPTION_CODES),
THREAD_STATE_NONE);
if(kr != KERN_SUCCESS)
{
KSLOG_ERROR("task_set_exception_ports: %s", mach_error_string(kr));
goto failed;
}
//创建另外一个线程 (担心处理奔溃的时候代码有问题,自己也奔溃了)
KSLOG_DEBUG("Creating secondary exception thread (suspended).");
pthread_attr_init(&attr);
attributes_created = true;
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
error = pthread_create(&g_secondaryPThread,
&attr,
&handleExceptions,
(void*)kThreadSecondary);
if(error != 0)
{
KSLOG_ERROR("pthread_create_suspended_np: %s", strerror(error));
goto failed;
}
g_secondaryMachThread = pthread_mach_thread_np(g_secondaryPThread);
ksmc_addReservedThread(g_secondaryMachThread);
KSLOG_DEBUG("Creating primary exception thread.");
error = pthread_create(&g_primaryPThread,
&attr,
&handleExceptions,
(void*)kThreadPrimary);
if(error != 0)
{
KSLOG_ERROR("pthread_create: %s", strerror(error));
goto failed;
}
pthread_attr_destroy(&attr);
g_primaryMachThread = pthread_mach_thread_np(g_primaryPThread);
ksmc_addReservedThread(g_primaryMachThread);
KSLOG_DEBUG("Mach exception handler installed.");
return true;
failed:
KSLOG_DEBUG("Failed to install mach exception handler.");
if(attributes_created)
{
pthread_attr_destroy(&attr);
}
uninstallExceptionHandler(); //失败了就不再监听了
return false;
}
小结:
获取当前进程对应的 task
获取原本处理异常的 port,并保存
创建新的异常处理端口
用这个新创建的端口申请权限
把异常接收的 port 设置为自己新创建的 port
创建好 port 之后,一直读取自己创建的线程 port 上的消息
处理
static void* handleExceptions(void* const userData)
{
MachExceptionMessage exceptionMessage = {{0}};
MachReplyMessage replyMessage = {{0}};
char* eventID = g_primaryEventID;
const char* threadName = (const char*) userData;
pthread_setname_np(threadName);
if(threadName == kThreadSecondary)
{
KSLOG_DEBUG("This is the secondary thread. Suspending.这是第二个线程。暂停。");
thread_suspend((thread_t)ksthread_self());
eventID = g_secondaryEventID;
}
for(;;)
{
KSLOG_DEBUG("Waiting for mach exception");
// Wait for a message.
/// 不断调用 mach_msg 接收消息,从异常端口中读取信息到 exceptionMessage 中
kern_return_t kr = mach_msg(&exceptionMessage.header,
MACH_RCV_MSG,
0,
sizeof(exceptionMessage),
g_exceptionPort,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
/// 上面一直循环读取,直到读取成功了,进入后面的处理函数中
if(kr == KERN_SUCCESS)
{
break;
}
// Loop and try again on failure.循环并在失败时重试。
KSLOG_ERROR("mach_msg: %s", mach_error_string(kr));
}
KSLOG_DEBUG("Trapped mach exception code 0x%llx, subcode 0x%llx",
exceptionMessage.code[0], exceptionMessage.code[1]);
if(g_isEnabled)
{
thread_act_array_t threads = NULL;
mach_msg_type_number_t numThreads = 0;
/// 暂停所有非当前线程以及白名单线程的线程
ksmc_suspendEnvironment(&threads, &numThreads);
g_isHandlingCrash = true;
/// 捕捉到异常之后清除所有的 monitor
kscm_notifyFatalExceptionCaptured(true);
KSLOG_DEBUG("Exception handler is installed. Continuing exception handling.");
// Switch to the secondary thread if necessary, or uninstall the handler
// to avoid a death loop.
/// 捕捉到 exception 后,恢复原来的 port
if(ksthread_self() == g_primaryMachThread)
{
KSLOG_DEBUG("This is the primary exception thread. Activating secondary thread.");
// TODO: This was put here to avoid a freeze. Does secondary thread ever fire?
restoreExceptionPorts();
if(thread_resume(g_secondaryMachThread) != KERN_SUCCESS)
{
KSLOG_DEBUG("Could not activate secondary thread. Restoring original exception ports.");
}
}
else
{
KSLOG_DEBUG("This is the secondary exception thread.");// Restoring original exception ports.");
// restoreExceptionPorts();
}
// Fill out crash information
/// 设置 crash 信息的 context
KSLOG_DEBUG("Fetching machine state.");
/// 创建一个 machineContext 用来保存异常信息
KSMC_NEW_CONTEXT(machineContext);
KSCrash_MonitorContext* crashContext = &g_monitorContext;
crashContext->offendingMachineContext = machineContext;
/// 创建一个遍历调用栈的 cursor
kssc_initCursor(&g_stackCursor, NULL, NULL);
/// 把线程信息附加到 machineContext 上
if(ksmc_getContextForThread(exceptionMessage.thread.name, machineContext, true))
{
kssc_initWithMachineContext(&g_stackCursor, 100, machineContext);
KSLOG_TRACE("Fault address %p, instruction address %p",
kscpu_faultAddress(machineContext), kscpu_instructionAddress(machineContext));
if(exceptionMessage.exception == EXC_BAD_ACCESS)
{
crashContext->faultAddress = kscpu_faultAddress(machineContext);
}
else
{
crashContext->faultAddress = kscpu_instructionAddress(machineContext);
}
}
KSLOG_DEBUG("Filling out context.");
crashContext->crashType = KSCrashMonitorTypeMachException;
crashContext->eventID = eventID;
crashContext->registersAreValid = true;
crashContext->mach.type = exceptionMessage.exception;
crashContext->mach.code = exceptionMessage.code[0] & (int64_t)MACH_ERROR_CODE_MASK;
crashContext->mach.subcode = exceptionMessage.code[1] & (int64_t)MACH_ERROR_CODE_MASK;
if(crashContext->mach.code == KERN_PROTECTION_FAILURE && crashContext->isStackOverflow)
{
// A stack overflow should return KERN_INVALID_ADDRESS, but
// when a stack blasts through the guard pages at the top of the stack,
// it generates KERN_PROTECTION_FAILURE. Correct for this.
crashContext->mach.code = KERN_INVALID_ADDRESS;
}
/// 将 mach 异常转为对应的 signal
crashContext->signal.signum = signalForMachException(crashContext->mach.type, crashContext->mach.code);
crashContext->stackCursor = &g_stackCursor;
/// context 交给 kscrashmonitor 处理
kscm_handleException(crashContext);
KSLOG_DEBUG("Crash handling complete. Restoring original handlers.");
g_isHandlingCrash = false;
/// 结束了捕获恢复所有线程
ksmc_resumeEnvironment(threads, numThreads);
}
KSLOG_DEBUG("Replying to mach exception message.");
// Send a reply saying "I didn't handle this exception".
replyMessage.header = exceptionMessage.header;
replyMessage.NDR = exceptionMessage.NDR;
replyMessage.returnCode = KERN_FAILURE;
/// 发消息告知没有处理这个异常
mach_msg(&replyMessage.header,
MACH_SEND_MSG,
sizeof(replyMessage),
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
return NULL;
}
小结:
不停循环通过 mach_msg() 读取 port 中传来的消息
读取成功后挂起所有线程
清除所有的 monitor,恢复原来的 port
抓取所有线程的信息保存到 KSMachineContext 结构体中
将各种信息交给 crashContext
把 crashContext 抛出给外部处理方法
恢复所有的线程
通过 mach_msg() 再发出一个消息告知没有处理这个异常
把mach转为signal
取消监听
Signal 异常
初始化
static bool installSignalHandler()
{
KSLOG_DEBUG("Installing signal handler.");
#if KSCRASH_HAS_SIGNAL_STACK
if(g_signalStack.ss_size == 0)
{
KSLOG_DEBUG("Allocating signal stack area.");
g_signalStack.ss_size = SIGSTKSZ;
g_signalStack.ss_sp = malloc(g_signalStack.ss_size);
}
KSLOG_DEBUG("Setting signal stack area.");
if(sigaltstack(&g_signalStack, NULL) != 0)
{
KSLOG_ERROR("signalstack: %s", strerror(errno));
goto failed;
}
#endif
/// 需要监听的 signal 数组
const int* fatalSignals = kssignal_fatalSignals();
/// 需要监听的 signal 数组大小
int fatalSignalsCount = kssignal_numFatalSignals();
if(g_previousSignalHandlers == NULL)
{
KSLOG_DEBUG("Allocating memory to store previous signal handlers.");
g_previousSignalHandlers = malloc(sizeof(*g_previousSignalHandlers)
* (unsigned)fatalSignalsCount);
}
struct sigaction action = {{0}};
action.sa_flags = SA_SIGINFO | SA_ONSTACK;
#if KSCRASH_HOST_APPLE && defined(__LP64__)
action.sa_flags |= SA_64REGSET;
#endif
sigemptyset(&action.sa_mask);
action.sa_sigaction = &handleSignal;
for(int i = 0; i < fatalSignalsCount; i++)
{
KSLOG_DEBUG("Assigning handler for signal %d", fatalSignals[i]);
/// 设置该 signal 对应的处理方法,并且保存原始的处理方法
if(sigaction(fatalSignals[i], &action, &g_previousSignalHandlers[i]) != 0)
{
/// 设置失败的时候走下面的方法
char sigNameBuff[30];
const char* sigName = kssignal_signalName(fatalSignals[i]);
if(sigName == NULL)
{
snprintf(sigNameBuff, sizeof(sigNameBuff), "%d", fatalSignals[i]);
sigName = sigNameBuff;
}
KSLOG_ERROR("sigaction (%s): %s", sigName, strerror(errno));
// Try to reverse the damage
for(i--;i >= 0; i--)
{
sigaction(fatalSignals[i], &g_previousSignalHandlers[i], NULL);
}
goto failed;
}
}
KSLOG_DEBUG("Signal handlers installed.");
return true;
//失败走的方法
failed:
KSLOG_DEBUG("Failed to install signal handlers.");
return false;
}
fatal_signal 包括如下:
处理
static void handleSignal(int sigNum, siginfo_t* signalInfo, void* userContext)
{
KSLOG_DEBUG("Trapped signal %d", sigNum);
if(g_isEnabled)
{
thread_act_array_t threads = NULL;
mach_msg_type_number_t numThreads = 0;
/// 暂停线程
ksmc_suspendEnvironment(&threads, &numThreads);
/// 通知已经捕获到异常了
kscm_notifyFatalExceptionCaptured(false);
KSLOG_DEBUG("Filling out context.");
KSMC_NEW_CONTEXT(machineContext);
/// 保存 context 到 machineContext 中,并且获取 thread 信息
ksmc_getContextForSignal(userContext, machineContext);
/// 把 machineContext 放到 g_stackCursor 中
kssc_initWithMachineContext(&g_stackCursor, 100, machineContext);
/// 生成真正的 context
KSCrash_MonitorContext* crashContext = &g_monitorContext;
memset(crashContext, 0, sizeof(*crashContext));
crashContext->crashType = KSCrashMonitorTypeSignal;
crashContext->eventID = g_eventID;
crashContext->offendingMachineContext = machineContext;
crashContext->registersAreValid = true;
crashContext->faultAddress = (uintptr_t)signalInfo->si_addr;
crashContext->signal.userContext = userContext;
crashContext->signal.signum = signalInfo->si_signo;
crashContext->signal.sigcode = signalInfo->si_code;
crashContext->stackCursor = &g_stackCursor;
/// 把 context 传给外部处理函数
kscm_handleException(crashContext);
/// 恢复原来的环境
ksmc_resumeEnvironment(threads, numThreads);
}
KSLOG_DEBUG("Re-raising signal for regular handlers to catch.");
// This is technically not allowed, but it works in OSX and iOS.
/// 重新抛出 signal
raise(sigNum);
}
小结
整个流程和 Mach 异常还是非常类似的,先暂停线程,然后读取线程信息,再把 signal 信息线程信息保存到 context 中,传递给外部的处理函数。最后恢复原来的环境。
取消监听
static void uninstallSignalHandler(void)
{
KSLOG_DEBUG("Uninstalling signal handlers.");
const int* fatalSignals = kssignal_fatalSignals();
int fatalSignalsCount = kssignal_numFatalSignals();
for(int i = 0; i < fatalSignalsCount; i++)
{
KSLOG_DEBUG("Restoring original handler for signal %d", fatalSignals[i]);
sigaction(fatalSignals[i], &g_previousSignalHandlers[i], NULL);
}
#if KSCRASH_HAS_SIGNAL_STACK
g_signalStack = (stack_t){0};
#endif
KSLOG_DEBUG("Signal handlers uninstalled.");
}
小结:
取消捕捉的方式和启动捕捉类似,都是通过 sigaction() 方法,不同的是,现在将原本的处理方法传回。
CPP 异常
初始化
处理
static void CPPExceptionTerminate(void)
{
thread_act_array_t threads = NULL;
mach_msg_type_number_t numThreads = 0;
/// 挂起非处理现场和白名单线程的其他所有线程
ksmc_suspendEnvironment(&threads, &numThreads);
KSLOG_DEBUG("Trapped c++ exception");
const char* name = NULL;
std::type_info* tinfo = __cxxabiv1::__cxa_current_exception_type();
if(tinfo != NULL)
{
name = tinfo->name();
}
if(name == NULL || strcmp(name, "NSException") != 0)
{
/// 捕捉到 crash 后,清空 KSCrash 的所有 monitor
kscm_notifyFatalExceptionCaptured(false);
KSCrash_MonitorContext* crashContext = &g_monitorContext;
memset(crashContext, 0, sizeof(*crashContext));
char descriptionBuff[DESCRIPTION_BUFFER_LENGTH];
const char* description = descriptionBuff;
descriptionBuff[0] = 0;
KSLOG_DEBUG("Discovering what kind of exception was thrown.");
g_captureNextStackTrace = false;
try
{
throw;
}
catch(std::exception& exc)
{
strncpy(descriptionBuff, exc.what(), sizeof(descriptionBuff));
}
#define CATCH_VALUE(TYPE, PRINTFTYPE) \
catch(TYPE value)\
{ \
snprintf(descriptionBuff, sizeof(descriptionBuff), "%" #PRINTFTYPE, value); \
}
CATCH_VALUE(char, d)
CATCH_VALUE(short, d)
CATCH_VALUE(int, d)
CATCH_VALUE(long, ld)
CATCH_VALUE(long long, lld)
CATCH_VALUE(unsigned char, u)
CATCH_VALUE(unsigned short, u)
CATCH_VALUE(unsigned int, u)
CATCH_VALUE(unsigned long, lu)
CATCH_VALUE(unsigned long long, llu)
CATCH_VALUE(float, f)
CATCH_VALUE(double, f)
CATCH_VALUE(long double, Lf)
CATCH_VALUE(char*, s)
catch(...)
{
description = NULL;
}
g_captureNextStackTrace = g_isEnabled;
// TODO: Should this be done here? Maybe better in the exception handler?
KSMC_NEW_CONTEXT(machineContext);
ksmc_getContextForThread(ksthread_self(), machineContext, true);
KSLOG_DEBUG("Filling out context.");
crashContext->crashType = KSCrashMonitorTypeCPPException;
crashContext->eventID = g_eventID;
crashContext->registersAreValid = false;
crashContext->stackCursor = &g_stackCursor;
crashContext->CPPException.name = name;
crashContext->exceptionName = name;
crashContext->crashReason = description;
crashContext->offendingMachineContext = machineContext;
/// 处理异常
kscm_handleException(crashContext);
}
else
{
KSLOG_DEBUG("Detected NSException. Letting the current NSException handler deal with it.");
}
/// 恢复线程
ksmc_resumeEnvironment(threads, numThreads);
KSLOG_DEBUG("Calling original terminate handler.");
/// 触发原本的 handler (其实也就是让他崩溃了)
g_originalTerminateHandler();
}
小结:
在这里可以看到cpp里面的崩溃都是处理完就调用原来的handler来触发崩溃了
NSException 异常
NSException就是oc语法提供的异常类,先通过 NSGetUncaughtExceptionHandler() 获取原先的异常处理函数,然后再通过 NSSetUncaughtExceptionHandler() 方法设置自己的处理函数
初始化
{
if(isEnabled != g_isEnabled)
{
g_isEnabled = isEnabled;
if(isEnabled)
{
KSLOG_DEBUG(@"Backing up original handler.");
/// 拿到原来的 handler
g_previousUncaughtExceptionHandler = NSGetUncaughtExceptionHandler();
KSLOG_DEBUG(@"Setting new handler.");
/// 设置新的 handler
NSSetUncaughtExceptionHandler(&handleUncaughtException);
KSCrash.sharedInstance.uncaughtExceptionHandler = &handleUncaughtException;
KSCrash.sharedInstance.currentSnapshotUserReportedExceptionHandler = &handleCurrentSnapshotUserReportedException;
}
else
{
KSLOG_DEBUG(@"Restoring original handler.");
/// 设置回原来的 handler
NSSetUncaughtExceptionHandler(g_previousUncaughtExceptionHandler);
}
}
}
处理
static void handleException(NSException* exception, BOOL currentSnapshotUserReported) {
KSLOG_DEBUG(@"Trapped exception %@", exception);
if(g_isEnabled)
{
thread_act_array_t threads = NULL;
mach_msg_type_number_t numThreads = 0;
ksmc_suspendEnvironment(&threads, &numThreads);
kscm_notifyFatalExceptionCaptured(false);
KSLOG_DEBUG(@"Filling out context.");
/// 调用堆栈的地址
NSArray* addresses = [exception callStackReturnAddresses];
NSUInteger numFrames = addresses.count;
uintptr_t* callstack = malloc(numFrames * sizeof(*callstack));
/// 转为堆栈
for(NSUInteger i = 0; i < numFrames; i++)
{
callstack[i] = (uintptr_t)[addresses[i] unsignedLongLongValue];
}
char eventID[37];
ksid_generate(eventID);
KSMC_NEW_CONTEXT(machineContext);
ksmc_getContextForThread(ksthread_self(), machineContext, true);
KSStackCursor cursor;
kssc_initWithBacktrace(&cursor, callstack, (int)numFrames, 0);
KSCrash_MonitorContext* crashContext = &g_monitorContext;
memset(crashContext, 0, sizeof(*crashContext));
crashContext->crashType = KSCrashMonitorTypeNSException;
crashContext->eventID = eventID;
crashContext->offendingMachineContext = machineContext;
crashContext->registersAreValid = false;
crashContext->NSException.name = [[exception name] UTF8String];
crashContext->NSException.userInfo = [[NSString stringWithFormat:@"%@", exception.userInfo] UTF8String];
crashContext->exceptionName = crashContext->NSException.name;
crashContext->crashReason = [[exception reason] UTF8String];
crashContext->stackCursor = &cursor;
crashContext->currentSnapshotUserReported = currentSnapshotUserReported;
KSLOG_DEBUG(@"Calling main crash handler.");
kscm_handleException(crashContext);
//是否回调的内容
free(callstack);
//继续处理
if (currentSnapshotUserReported) {
ksmc_resumeEnvironment(threads, numThreads);
}
//如果之前有处理崩溃的函数,就调用
if (g_previousUncaughtExceptionHandler != NULL)
{
KSLOG_DEBUG(@"Calling original exception handler.");
g_previousUncaughtExceptionHandler(exception);
}
}
}
小结:类似cpp,调用堆栈的地址等内容已经封装在NSException里面了