- GS-SLAM论文阅读笔记-MGSO
zenpluck
GS论文阅读论文阅读笔记
前言MGSO首字母缩略词是直接稀疏里程计(DSO),我们建立的光度SLAM系统和高斯飞溅(GS)的混合。这应该是第一个前端用DSO的高斯SLAM,不知道这个系统的组合能不能打得过ORB-SLAM3,以及对DSO会做出怎么样的改进以适应高斯地图,接下来就看一下吧!GishelloG^s_ihelloGishello我是红色文章目录前言1.背景介绍2.关键内容2.1SLAMmodule2.2Dense
- 关于离子滤波小记
文弱_书生
乱七八糟人工智能计算机视觉算法
粒子滤波(ParticleFilter,PF)粒子滤波是一种基于蒙特卡洛方法的贝叶斯滤波算法,主要用于解决非线性、非高斯的状态估计问题。它广泛应用于机器人定位、目标跟踪、金融建模等领域。1.粒子滤波的基本概念粒子滤波的核心思想是用一组加权的**随机样本(粒子)**来近似后验概率分布,而非采用卡尔曼滤波那样的参数化分布假设(如高斯分布)。设系统的状态模型如下:xk=f(xk−1,uk,wk)x_k=
- 基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究
算法如诗
电池建模(RULBC)粒子滤波锂离子电池放电时间预测
基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究一、研究背景与意义锂离子电池作为现代储能系统的核心组件,其放电时间(End-of-DischargeTime,EOD)的准确预测对电池管理系统(BMS)的可靠性和安全性至关重要。传统方法(如安时积分法)易受噪声、温度漂移等因素干扰,而基于状态估计的滤波算法(粒子滤波/PF、卡尔曼滤波/KF)通过动态更新模型参数,能显著提升预测精度。二、
- 电机控制常见面试问题(十)
小雀丝
嵌入式硬件单片机电机控制电机
文章目录一、Kalman滤波器的原理以及EKF(扩展卡尔曼滤波)的概念1.理解Kalman滤波器2.理解EKF3.总结二、滑动平均滤波器的设计1.定义与原理2.关键参数设计3.与其它滤波器对比三.PID与MPC的区别四.李雅普诺夫稳定性的概念五.谈一下对电感与电容的理解一、Kalman滤波器的原理以及EKF(扩展卡尔曼滤波)的概念1.理解Kalman滤波器什么是Kalman滤波器?——用“天气预报
- 关于非线性优化小记
文弱_书生
乱七八糟算法
非线性优化(NonlinearOptimization)1.什么是非线性优化?非线性优化是指目标函数或约束条件中至少有一个是非线性的优化问题。它广泛应用于工程、经济、人工智能、机器学习等领域,用于求解最优解的问题。非线性优化通常可以表示为以下数学形式:minxf(x)或maxxf(x)\min_{x}f(x)\quad\text{或}\quad\max_{x}f(x)xminf(x)或xmax
- 探索未来架构:基于AWS的响应式微服务框架
柏赢安Simona
探索未来架构:基于AWS的响应式微服务框架reactive-refarch-cloudformationReactiveMicroservicesArchitectureswithAmazonECS,AWSLambda,AmazonKinesisStreams,AmazonElastiCache,andAmazonDynamoDB项目地址:https://gitcode.com/gh_mirror
- ROS+YOLOV8+SLAM智能小车导航实战(三、Astra Pro深度相机节点+Astra Pro普通color颜色节点)
智慧愚行
YOLO机器人自动驾驶
一、开始创建ROS节点空间mkdiryolov8_ros/src-pcdyolov8_ros/srccd..catkin_make如果报以下错误是因为系统中存在多个python环境解决办法首先查看你本机有多少个python版本,然后你conda版本的python位置在那里找到后替换调/usr/bin/python:查看本机中的python版本位置都有那些which-apython3catkin_m
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 卡尔曼滤波算法c语言stm32,卡尔曼滤波算法及C语言实现_源代码
weixin_39643255
卡尔曼滤波算法c语言stm32
a往南向北2019-01-1620:39:2011340收藏111分类专栏:C语言嵌入式文章标签:卡尔曼滤波C代码卡尔曼滤波理论很容易就可以在MATLAB软件环境下实现,但是,实际的硬件板子上还是需要C语言,当然可以自动代码生成,还有一种就是直接手动编写C语言。1.前言在google上搜索卡尔曼滤波,很容易找到以下这个帖子:http://blog.csdn.net/lanbing510/artic
- MPU6050 卡尔曼滤波算法 四元数欧拉姿态解算 STM32 CubeMX HAL库 MDKkeil5 零基础移植
辛尘大海
算法stm32嵌入式硬件
文章目录一、在cubemx开启IIC并设置好对应的IIC引脚二、generatecode生成代码三、复制以下的全部代码新建分别保存放到IncSrc文件夹中1.MPU6050.h2.MPU6050.C四、如何使用总结一、在cubemx开启IIC并设置好对应的IIC引脚二、generatecode生成代码(记得生成单个c.h.文件)!!!!!!三、复制以下的全部代码新建分别保存放到IncSrc文件夹中
- STM32应用(六)一阶卡尔曼滤波代码和简单应用
2401_87557129
stm32嵌入式硬件单片机
STM32应用(五)基于输入捕获的超声波HC-SR04模块使用1.一阶卡尔曼滤波代码实现1.1Kalman滤波代码1.1.1Kalman.c文件#include"Kalman.h"voidKalman\_Init(){kfp.Last_P=1;kfp.Now_P=0;kfp.out=0;kfp.Kg=0;kfp.Q=0;kfp.R=0.01;}/\*\*\*卡尔曼滤波器\*@paramKalman
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- 云原生Serverless平台:无服务器计算的架构革命
桂月二二
云原生serverless架构
引言:从虚拟机到函数即服务(FaaS)AWSLambda每天处理数十万亿次请求,阿里巴巴函数计算支撑双十一亿级事件触发。KnativeServing实现秒级自动扩缩至零,Vercel边缘函数网络响应时间跌破50ms。CNCFOpenFaaS在GitHub斩获25k星,AzureFunctions支持毫秒级计费精度,GoogleCloudRun冷启动优化至200ms内。全球500强企业70%采用Se
- AWS无服务器 应用程序开发—第十一章API Gateway
yunquantong
AWS技术awsserverlessgateway
APIGateway是AWS提供的一种托管服务,用于创建、发布、维护、保护和监控RESTful和WebSocketAPI。它可以帮助开发者构建可扩展的微服务架构,并提供了丰富的功能来管理API的生命周期和流量。主要功能和特点:API创建和管理:可以使用APIGateway快速创建和定义API,包括定义资源、方法和参数。支持多种集成方式,如AWSLambda、AWSEC2、AWSS3等,还可以自定义
- 基于 MATLAB仿真卡尔曼滤波原理及应用
资深码侬
matlabmatlab开发语言
基于MATLAB仿真卡尔曼滤波原理及应用简介:《卡尔曼滤波原理及应用:MATLAB仿真》主要介绍数字信号处理中的卡尔曼(Kalman)滤波算法及在相关领域应用。《卡尔曼滤波原理及应用:MATLAB仿真》共7章。第1章为绪论。第2章介绍MATLAB算法仿真的编程基础。第3章介绍线性Kalman滤波。第4章讨论扩展Kalman滤波,并介绍其在目标跟踪和制导领域的应用和算法仿真。第5章介绍UKF滤波算法
- 从零开始学Java Lambda表达式:一篇让你彻底理解的通俗指南
z2637305611
学习java开发语言
引言想象你每天点外卖要写500字的订单备注,结果有一天发现点“快速套餐”按钮就能搞定——这就是Lambda表达式的魅力!它能让你用“快餐式”代码代替冗长的写法。本文会用大白话、生活案例和代码对比,帮你彻底搞懂JavaLambda的用法!一、Lambda是什么?一句话概括:“用更短的代码,实现一个方法”——专门用来简化匿名内部类的写法!场景对比:传统写法vsLambda写法假设你有一个“点击按钮触发
- Ubuntu20.04安装LOCUS遇到的编译错误
谁许谁地老天荒
SLAM-ROSubuntuc++
1、编译错误:core_msgs/MapInfo.h:没有那个文件或目录具体报错如下/home/zys/catkin_ws/test/src/common_nebula_slam/point_cloud_mapper/include/point_cloud_mapper/PointCloudMapper.h:48:10:fatalerror:core_msgs/MapInfo.h:没有那个文件或目
- 嵌入式学习笔记-卡尔曼滤波,PID,MicroPython
tt555555555555
面经嵌入式学习笔记学习笔记嵌入式
文章目录卡尔曼滤波卡尔曼滤波的核心思想卡尔曼滤波的数学模型1.状态转移模型(预测系统状态)2.观测模型(预测测量值)卡尔曼滤波的五个关键步骤1.预测状态2.预测误差协方差3.计算卡尔曼增益4.更新状态5.更新误差协方差卡尔曼滤波算法步骤总结代码实现(Python示例)PID调节总结MicroPython示例代码:控制LED灯并连接WiFi1.硬件准备2.连接方式3.示例代码代码说明开发环境搭建今天
- Ubuntu20.04 ros-noetic下opencv多版本问题may conflict with libopencv_highgui.so.4.2
JANGHIGH
小技巧OpenCVopencv人工智能计算机视觉
Ubuntu20.04ros-noetic下opencv多版本问题问题解决情况1情况2方法当前终端生效将上述命令添加到~/.bashrc中,使其永久生效问题当编译某程序包时,出现如下警告,但是编译通过。/usr/bin/ld:warning:libopencv_highgui.so.406,neededby/lidar_slam_ws/devel/lib/libvikit_common.so,ma
- VSLAM新方案之《在复杂环境中实现高精度与超强鲁棒性》
OAK中国_官方
SLAM人工智能rpab-map
OAKChina&苏州泛科特机器人联合推出OAK-DSeries&因子空间感知(FactorPerceptionKit)VSLAM解决方案01FactorPerceptionKit简介FactorPerceptionKit是一种真正基于深度学习技术的VSLAM方案,不同于许多厂商仅通过添加目标检测或语义分割模型来实现额外功能,我们直接在SLAM底层使用HF-Net模型,该模型同时进行局部特征点检测
- 案例分享:D2 Slam @xuhao3e8
OAK中国_官方
无人机
视频来源:$D^2$SLAM:DecentralizedandDistributedCollaborativeVisual-inertialSLAM硬件新4P的介绍https://www.oakchina.cn/product/oak-ffc-4p-new/软件介绍:https://github.com/HKUST-Aerial-Robotics/D2SLAM~~~~~~~(分界线)~~~~~~~
- OAK相机:纯视觉SLAM在夜晚的应用
OAK中国_官方
人工智能机器学习SLAM
哈喽,OAK的朋友们,大家好啊,今天这个视频主要想分享一下袁博士团队用我们的OAK相机产出的新成果在去年过山车SLAM的演示中,袁博士团队就展示了纯视觉SLAM在完全黑暗的环境中的极高鲁棒性。现在袁博士团队进一步挖掘了纯视觉的潜力,于是又专门录了一段夜间的演示给我们展示了在完全黑暗及光线变化的环境中可靠工作的VIO、回环检测及适用于大场景的内存管理技术。他们现在已将整套VSLAM方案包含在Fact
- yolo位姿估计实验
jarreyer
YOLO
目录介绍实验过程2.1数据集下载2.2模型和数据配置文件修改2.3模型训练参考链接1.介绍1.1简介YOLOv8-Pose是基于YOLOv4算法的姿势估计模型,旨在实现实时高效的人体姿势估计。姿势估计在计算机视觉领域具有重要意义,可广泛应用于视频监控、运动分析、健康管理等领域。1.2背景传统的姿势估计方法常需复杂网络架构和大量计算资源,导致实时性不佳。YOLOv8-Pose通过对YOLOv4算法进
- 利用 AWS API Gateway 和 Lambda 节省成本的指南
fxrz12
awsgateway云计算无服务器架构低代码
在现代云计算环境中,企业和开发人员不断寻求方法来优化成本,同时保持高性能和灵活性。AWSAPIGateway和Lambda组合提供了一种无服务器(Serverless)的解决方案,能够显著降低基础设施成本,简化管理,并提升应用的可扩展性。APIGateway和Lambda的成本效益1.无需服务器管理使用AWSLambda,您无需预置或管理服务器。这意味着不再需要为闲置的资源付费。Lambda采用按
- 视觉SLAM十四讲 第7讲 (3) 相机运动估计 2D-2D/3D-2D/3D-3D
LYF0816LYF
slamlearning3d计算机视觉算法slam
相机运动估计2D-2D/3D-2D/3D-3D1.2D-2D:对极约束2.三角测量3.3D-2D:PnP3.1直接线性变换DLT3.2P3P3.3最小化投影误差求解PnP4.3D-3D:ICP4.1SVD方法4.2非线性优化方法5.总结若已经有匹配好的点对,要根据点对估计相机的运动,可以分为以下三种情况:2D-2D:即点对都是2D点,比如单目相机匹配到的点对。我们可以用对极几何来估计相机的运动。在
- unable to launch什么意思_激光SLAM | IMLS-SLAM:基于scan-to-model方法的大场景3D激光SLAM...
weixin_39559097
unabletolaunch什么意思
论文题目:IMLS-SLAM:scan-to-modelmatchingbasedon3DdataIMSL-SLAM和IMSL-SLAM++是kitti数据集上仅次于LOAM的激光SLAM系统,虽然它有一个最大的缺点,就是不实时,而且时间确实非常慢(1.3s),但是作者也给出了这种不实时的原因,是可以改进的。更重要的是,论文里以IMLS曲面为基础进行的scan-to-model匹配方法是值得借鉴的
- SLAM文献之-IMLS-SLAM: scan-to-model matching based on 3D data
点云SLAM
SLAM3d机器学习SLAMIMLSICP
IMLS-SLAM算法原理详解一、算法概述IMLS-SLAM(ImplicitMovingLeastSquaresSLAM)是一种基于3D激光雷达数据的低漂移SLAM算法,由Jean-EmmanuelDeschaud等人在2018年提出。其核心思想是通过隐式移动最小二乘(IMLS)曲面建模实现scan-to-model的匹配框架,显著提升了定位与建图的精度和鲁棒性。该算法在无闭环检测的情况下,4公
- ORB_SLAM2编译build_ros.sh时报错([rosbuild] Error from directory check: /opt/ros/kinetic/share)
Spider_man_
linux
参考:https://www.pianshen.com/article/8679352229/编译build_ros.sh时报错在ros上编译build_ros.sh时报错,出现如下信息:BuildingROSnodesmkdir:cannotcreatedirectory‘build’:Fileexists[rosbuild]BuildingpackageORB_SLAM2[rosbuild]E
- 3DGS(三维高斯散射)与SLAM技术结合的应用
点云SLAM
SLAM3d3DGSSLAM技术深度学习计算机视觉定位和建图渲染
3DGS(三维高斯散射)与SLAM(即时定位与地图构建)技术的结合,为动态环境感知、高效场景建模与实时渲染提供了新的可能性。以下从技术融合原理、应用场景、优势挑战及典型案例展开分析:一、核心融合原理1.3DGS在SLAM中的角色场景表示:替代传统点云或体素地图,通过高斯函数集合显式建模场景几何与外观。动态建模:通过时间参数化高斯(如位置、协方差随时间变化),实时跟踪运动物体。可微渲染:支持端到端优
- Serverless Framework 使用教程
裘羿洲
ServerlessFramework使用教程serverless无服务器框架——使用AWSLambda、AzureFunctions、GoogleCloudFunctions等构建无服务器架构的Web、移动和物联网应用程序!项目地址:https://gitcode.com/gh_mirrors/se/serverless项目介绍ServerlessFramework是一个开源项目,旨在帮助开发者
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理