- 【3.6 python中的numpy编写一个“手写数字识”的神经网络】
wang151038606
深度学习入门pythonnumpy神经网络
3.6python中的numpy编写一个“手写数字识”的神经网络要使用Python中的NumPy库从头开始编写一个“手写数字识别”的神经网络,我们通常会处理MNIST数据集,这是一个广泛使用的包含手写数字的图像数据集。但是,完全用NumPy来实现神经网络(包括数据的加载、预处理、模型定义、前向传播、损失计算、反向传播和权重更新)是一个相当复杂的任务,因为NumPy本身不提供自动微分或高级优化算法(
- Pytorch ResNet Fashion-Mnist
hyhchaos
pytorch实现ResNetonFashion-MNISTfrom__future__importprint_functionimporttorchimporttimeimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transformsastransformsfromtorchimp
- 神经网络分类任务python入门
三十度角阳光的问候
神经网络分类python
目录Mnist分类任务读取Mnist数据集转换成tensor才能参与后续建模训练torch.nn.functional创建一个model来更简化代码使用TensorDataset和DataLoader来简化整个过程Mnist分类任务-网络基本构建与训练方法,常用函数解析-torch.nn.functional模块-nn.Module模块读取Mnist数据集-会自动进行下载frompathlibim
- 实现CNN对mnist手写数字分类
文哥的学习日记
本文使用的tensorflow版本:1.4tensorflow安装:pipinstalltensorflow1、CNN哇咔咔,熟悉的味道,自己第一次接触tensorflow也是写的CNN的例子,当时对于CNN也是一知半解,经过了一年,终于差不多搞清楚了CNN的原理。CNN中需要理解的主要有两点,稀疏连接SparseConnectivity(每个神经元仅与前一层部分神经元相连接)以及参数共享Para
- torch.nn到底是什么?
yanglamei1962
PyTorch学习教程python深度学习pytorch
torch.nn到底是什么?我们建议将本教程作为笔记本而不是脚本来运行。要下载笔记本(.ipynb)文件,请单击页面顶部的链接。PyTorch提供设计精美的模块和类torch.nn,torch.optim,Dataset和DataLoader神经网络。为了充分利用它们的功能并针对您的问题对其进行自定义,您需要真正了解它们在做什么。为了建立这种理解,我们将首先在MNIST数据集上训练基本神经网络,而
- 深度学习五种不同代码实现,神经网络,机器学习
学呗~那不然呢
pycharm
第一种importnumpyasnpimporttensorflowastfmnist=tf.keras.datasets.mnistimportmatplotlib.pyplotaspltimportmatplotlibmatplotlib.use("TkAgg")(x_train,y_train),(x_test,y_test)=mnist.load_data()x_train=x_train
- Python(PyTorch)物理变化可微分神经算法
亚图跨际
算法Python神经网络物理变化分层物理计算多模机械振荡非线性电子振荡光学谐波可微分数学模型动力方程
要点使用受控物理变换序列实现可训练分层物理计算|多模机械振荡、非线性电子振荡器和光学二次谐波生成神经算法验证|训练输入数据,物理系统变换产生输出和可微分数字模型估计损失的梯度|多模振荡对输入数据进行可控卷积|物理神经算法数学表示、可微分数学模型|MNIST和元音数据集评估算法语言内容分比PyTorch可微分优化假设张量xxx是元参数,aaa是普通参数(例如网络参数)。我们有内部损失Lin=a0⋅x
- 24.8.19学习笔记(MNIST,)
kkkkk021106
学习笔记
pytorchMNIST手写数字识别:importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms#设定随机种子以保证结果可复现torch.manual_seed(0)#定义超参数batch_size=32learning_rate=0.001num_epochs=10#1
- 变分自编码器(VAE)PyTorch Lightning 实现
小嗷犬
Python深度学习pytorch人工智能python
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录VAE简介基本原理应用与优点缺点与挑战使用VAE生成MNIST手写数字忽略警告导入必要的库设置随机种子cuDNN设置超参数设置数据加载定义VAE模型定义损失函数定义Lightning模型训练模型绘制训
- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- TensorFlow 在mnist上实现siamese net,出现please use urllib or similar directly错误
qq_41895190
tensorflowTensorFlowmnistsiamesenetmnist手写数字分类手写数字分类
TensorFlow在mnist上实现siamesenet(TensorFlow实现mnist手写数字分类,也用同样的方法解决)在使用fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.read_data_sets('./data/mnist',one_hot=True)导入mnist数据集时,无法下载。出
- 运行《tensorflow21天》的warning
guxue365
AI
在运行第一章的时候所出现得提示信息wt@wt-desktop:~/software/AI/chapter_1$pythondownload.pyWARNING:tensorflow:Fromdownload.py:5:read_data_sets(fromtensorflow.contrib.learn.python.learn.datasets.mnist)isdeprecatedandwill
- Tensorflow基础代码报错学习笔记11——classification分类学习
7STARX
tensorflow学习笔记tensorflow机器学习python
原教程地址原代码更换了tensorflow1.0版本之后代码跟着up主的教程敲就可以了,这里面没什么需要改动的importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_data#如果电脑中没有数据集,会自动下载mnist=input_data.read_data_sets('MNIST_data',one_hot=
- 机器学习第二十五周周报 ConvLSTM
沽漓酒江
机器学习人工智能
文章目录week25ConvLSTM摘要Abstract一、李宏毅机器学习二、文献阅读1.题目2.abstract3.网络架构3.1降水预报问题的建模3.2ConvolutionalLSTM3.3编码-预测结构4.文献解读4.1Introduction4.2创新点4.3实验过程4.3.1Moving-MNISTDataset4.3.2雷达回波数据集4.4结论三、基于pytorch实现ConvLST
- AIGC实战——能量模型(Energy-Based Model)
盼小辉丶
AIGC深度学习能量模型
AIGC实战——能量模型0.前言1.能量模型1.1模型原理1.2MNIST数据集1.3能量函数2.使用Langevin动力学进行采样2.1随机梯度Langevin动力学2.2实现Langevin采样函数3.利用对比散度训练小结系列链接0.前言能量模型(Energy-basedModel,EBM)是一类常见的生成模型,其借鉴了物理系统建模的一个关键思想,即事件的概率可以用玻尔兹曼分布来表示。玻尔兹曼
- 使用Keras和tensorfow,CNN手写数字识别
smallcui
查看数据fromtensorflow.keras.datasetsimportmnistimportmatplotlib.pyplotasplt(train_x,train_y),(test_x,test_Y)=mnist.load_data()plt.figure(figsize=(10,10))foriinrange(25):plt.subplot(5,5,i+1)plt.xticks([])
- tensorflow利用CNN实现MNIST图片识别
Lornatang
FunctioninstructionsThedataData:Thisistheclassicmnisthandwritingrecognitionimagedata.Downloadlink:thisDirectorytree├──__init__.py├──__pycache__│└──base.cpython-37.pyc├──base.py├──base.pyc├──data│├──t1
- [Tensorflow][原创]tensorflow保存PB模型的几种方法总结
未来自主研究中心
第一种方法:(官方不推荐)(1)引入库fromtensorflow.examples.tutorials.mnistimportinput_data(2)一般在seession初始化全局变量下写这句代码constant_graph=graph_util.convert_variables_to_constants(sess,sess.graph_def,['output_node_name'])其
- Internet Resources 6
韫左寻
2.制定一份资源清单。对于互联网范围的研究,谷歌是杰出的。尽管如此,有时候你的研究范围会更窄,重点也会更集中。在这种情况下,了解一些与主题相关的特定网站是有帮助的。这是一个很好的入门列表,按一般主题排列。对于有争议问题的各种观点的网站:http://www.townhall.com/columnistshttp://www.nytimes.com/pages/opinion/columnshttp
- 华为机试真题实战应用【赛题代码篇】-新工号系统/工号不够用了怎么办(附Java和Python代码)
林聪木
java算法开发语言
目录问题描述思路解析代码实现Java代码2JSpython问题描述3020年,空间通信集团的员工人数突破
- 基于卷积神经网络模型的手写数字识别
Jc.MJ
课程设计Pythoncnn人工智能神经网络深度学习
基于卷积神经网络模型的手写数字识别一.前言二.设计目的及任务描述2.1设计目的2.2设计任务三.神经网络模型3.1卷积神经网络模型方案3.2卷积神经网络模型训练过程3.3卷积神经网络模型测试四.程序设计一.前言手写数字识别要求利用MNIST数据集里的70000张手写体数字的图像,建立神经网络模型,进行0到9的分类,并能够对其他来源的图片进行识别,识别准确率大于97%。图片示例如下。图1-1mnis
- 基于全连接神经网络模型的手写数字识别
Jc.MJ
课程设计Python神经网络人工智能深度学习
基于全连接神经网络模型的手写数字识别一.前言二.设计目的及任务描述2.1设计目的2.2设计任务三.神经网络模型3.1全连接神经网络模型方案3.2全连接神经网络模型训练过程3.3全连接神经网络模型测试四.程序设计一.前言手写数字识别要求利用MNIST数据集里的70000张手写体数字的图像,建立神经网络模型,进行0到9的分类,并能够对其他来源的图片进行识别,识别准确率大于97%。图片示例如下。图1.1
- (零)我还没想好标题 = ='''
半亩半亩
1.实验简介从底层实现BP神经网络,实现对0-9数字手写体的训练与分类2.实验数据Mnist数据集Mnist数据集来自美国国家标准与技术研究所:NationalInstituteofStandardsandTechnology(NIST)训练集(trainingset)和测试集(testset)均是由来自250个不同人手写的数字构成,其中50%是高中学生,50%来自人口普查局(theCensusB
- Pytorch CGAN实现MNIST手写数字数据集
晚风何处来
pytorch人工智能机器学习深度学习gan
简介生成对抗网络(GenerativeAdversarialNetworks,简称GAN)是一种深度学习模型,通过生成器和判别器的对抗训练,从随机噪声中生成逼真的数据。在本博客中,我们将使用PyTorch框架实现一个条件生成对抗网络(ConditionalGAN,简称CGAN),并利用MNIST数据集进行手写数字的生成。项目概述在这个项目中,我们将实现一个生成器(Generator)和一个判别器(
- 【深度学习】: MNIST手写数字识别
X.AI666
深度学习深度学习人工智能机器学习
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,可接实验指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例2:构建自己的多层感知机:MNIST手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1数据集简介MNIS
- PyTorch中torchvision库的详细介绍
科学禅道
PyTorchpytorch人工智能python
torchvision是PyTorch生态系统中的一个关键库,专门为计算机视觉任务设计和优化。它提供了以下几个核心功能:数据集:内置了多种广泛使用的图像和视频数据集,如MNIST、CIFAR10/100、Fashion-MNIST、ImageNet、COCO等,并且它们以torch.utils.data.Dataset的形式实现,方便与PyTorch数据加载器(DataLoader)集成。数据预处
- MNIST数据集介绍及基于Pytorch下载数据集
高斯小哥
PyTorchpytorch人工智能python
MNIST数据集介绍及基于Pytorch下载数据集文章目录引言MNIST数据集介绍基于Pytorch下载MNIST数据集并可视化使用MNIST数据集进行图像分类任务MNIST数据集的局限性分析小结结尾引言在深度学习的领域中,MNIST数据集的重要地位不容忽视。作为入门级的计算机视觉数据集,它为研究者提供了一个宝贵的资源,帮助无数人开启了人工智能的探索之旅。今天,我们将深入挖掘MNIST数据集的魅力
- 深度学习手写字符识别:训练模型
DogDaoDao
深度学习深度学习人工智能手写字符识别PyTorchPycharm模型训练模型推理
说明本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。第一个深度学习实例手写字符识别深度学习环境配置可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。Windows11搭建GPU版本PyTorch环境详细过程数据集手写字符识别用到的数据集是MNIST数据集(MixedNationalInstituteofStandardsandTechnologydatabas
- 使用sklearn-SGDClassifier分类mnist数据集中‘5‘,并使用交叉验证评估模型
脑子不好真君
机器学习sklearn分类mnist
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportfetch_openmlfromsklearn.linear_modelimportSGDClassifierfromsklearn.model_selectionimportcross_val_scoremnist=fetch_openml('mnist_78
- 【深度学习】Softmax实现手写数字识别
住在天上的云
深度学习深度学习人工智能Softmax手写数字识别驭风计划
实训1:Softmax实现手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1任务目标1.1简介本次案例中,你需要用python实现Softmax回归方法,用于MNIST手写数字数据集分类任务。你需要完成前向计算loss和参数更新。你需要首先实现Softmax函数和交叉熵损失函数的计算。y=softmax(WTx+b)L=CrossEntropy(y,label)y=softm
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt