数据结构-二叉树

性质

  1. 在二叉树的第i层上至多有2i-1个结点(i>=1)。
  2. 深度为k的二叉树至多有2k-1个结点(k>=1)。
  3. 对任何一颗二叉树T,如果其终端结点数为n0,度为2的 结点 数为n2,则n0 = n2+1.
  4. 具有n个结点的完全二叉树深度为[log2n]+1 ([x]表示不 大于 x的最大整数)。
  5. 如果对一颗有n个结点的完全二叉树(其深度为[log2n]+1) 的结点按层序编号(从第1层到第[log2n]+1层,每层从左到 右),对任意一个结点i(1<=i<=n)有:
    1).如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结 点[i/2]
    2).如果2i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩 子是结点2i。
    3).如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+1。

节点

 public class TreeNode{
        public TreeNode leftChild;
        public TreeNode rightChild;
        public Integer index;
        public T data;
        public TreeNode( T data) {
            this.data = data;
        }
        public TreeNode(Integer index, T data) {
            this.index = index;
            this.data = data;
        }

        @Override
        public String toString() {
            return "TreeNode{" +
                    "leftChild=" + leftChild +
                    ", rightChild=" + rightChild +
                    ", index=" + index +
                    ", data=" + data +
                    '}';
        }
    }

二叉树建立

  • 手动直接建立
  /**
     * 构建二叉树
     *           A
     *     B         C
     * D      E         F
     */
    public void createBinaryTree(){
        System.out.println("           A");
        System.out.println("       /      \\");
        System.out.println("      B         C");
        System.out.println("    /   \\       \\");
        System.out.println(" D      E         F");
        TreeNode nodeA = new TreeNode(1, "A");
        this.rootNode = nodeA;
        TreeNode nodeB = new TreeNode(2, "B");
        TreeNode nodeC = new TreeNode(3, "C");
        TreeNode nodeD = new TreeNode(4, "D");
        TreeNode nodeE = new TreeNode(5, "E");
        TreeNode nodeF = new TreeNode(7, "F");
        nodeA.leftChild = nodeB;
        nodeA.rightChild = nodeC;
        nodeB.leftChild = nodeD;
        nodeB.rightChild = nodeE;
        nodeC.rightChild = nodeF;
        //nodeF.rightChild = new TreeNode(8,"G");
    }
  • 前序遍历反向生成二叉树
    /**
     * 前序遍历反向生成二叉树
     * ABD##E##C#F
     */
    public TreeNode createBinaryTree(AtomicInteger dataIndex,T[] datas){
        if (dataIndex.get()>=datas.length||"#".equals(datas[dataIndex.get()])){
            return null;
        }
        TreeNode treeNode =  new TreeNode(dataIndex.get(), datas[dataIndex.get()]);
        if (this.rootNode == null){
            this.rootNode = treeNode;
        }
        dataIndex.incrementAndGet();
        treeNode.leftChild = createBinaryTree(dataIndex, datas);
        dataIndex.incrementAndGet();
        treeNode.rightChild = createBinaryTree(dataIndex, datas);
        return treeNode;
    }

二叉树遍历

  • 前序遍历
    /**
     * 前序遍历 根 左 右
     */
    public void preOrder(TreeNode currNode){
        if (currNode==null)
            return;
        System.out.println(currNode.data);
        preOrder(currNode.leftChild);
        preOrder(currNode.rightChild);
    }
  • 中序遍历
 /**
     *
     * 中序遍历 左 根 右
     */
    public void midOrder(TreeNode currNode){
        if (currNode == null)
            return;
        midOrder(currNode.leftChild);
        System.out.println(currNode.data);
        midOrder(currNode.rightChild);
    }

  • 后序遍历
    /**
     * 后序遍历 左 右 根
     */
    public void afterOrder(TreeNode currNode){
        if (currNode==null)
            return;
        afterOrder(currNode.leftChild);
        afterOrder(currNode.rightChild);
        System.out.println(currNode.data);
    }
  • 非递归形式前序遍历

    /**
     * 非递归形式树的前中后序遍历
     */
    public void preNoneCycle(TreeNode currNode){
        Stack treeNodeStack = new Stack();
        treeNodeStack.push(currNode);
        while (!treeNodeStack.isEmpty()){
            TreeNode tempNode = treeNodeStack.pop();
            if (tempNode!=null)
                System.out.println(tempNode.data);
            if (tempNode.rightChild !=null)
                treeNodeStack.push(tempNode.rightChild);
            if (tempNode.leftChild !=null)
                treeNodeStack.push(tempNode.leftChild);
        }

    }
  • 非递归遍历
/**
     * 非递归中序遍历
     * @param currNode
     */
    public void midNoneCycle(TreeNode currNode){
        Stack treeNodeStack = new Stack();
        while (currNode != null || !treeNodeStack.isEmpty()) {
            // 一直循环到二叉排序树最左端的叶子结点(currentNode是null)
            while (currNode != null) {
                treeNodeStack.push(currNode);
                currNode = currNode.leftChild;
            }
            currNode = treeNodeStack.pop();
            System.out.println(currNode.data);
            currNode = currNode.rightChild;
        }
    }

    /**
     * 非递归后序遍历
     * @param currNode
     */
    public void afterNoneCycle(TreeNode currNode){
        LinkedList stack = new LinkedList();
        TreeNode currentNode = currNode;
        TreeNode rightNode = null;
        while (currentNode != null || !stack.isEmpty()) {
            // 一直循环到二叉排序树最左端的叶子结点(currentNode是null)
            while (currentNode != null) {
                stack.push(currentNode);
                currentNode = currentNode.leftChild;
            }
            currentNode = stack.pop();
            // 当前结点没有右结点或上一个结点(已经输出的结点)是当前结点的右结点,则输出当前结点
            while (currentNode.rightChild == null || currentNode.rightChild == rightNode) {
                System.out.print(currentNode.data + " ");
                rightNode = currentNode;
                if (stack.isEmpty()) {
                    return; //root以输出,则遍历结束
                }
                currentNode = stack.pop();
            }
            stack.push(currentNode); //还有右结点没有遍历
            currentNode = currentNode.rightChild;
        }
    }
  • 广度优先遍历
    /** 
     * 广度优先遍历二叉树,又称层次遍历二叉树 
     * @param node 
     */  
    public void breadthFirstTraverse(Node root) {  
        Queue> queue = new LinkedList>();  
        Node currentNode = null;  
        queue.offer(root);  
        while (!queue.isEmpty()) {  
            currentNode = queue.poll();  
            System.out.print(currentNode.value + " ");  
            if (currentNode.left != null)  
                queue.offer(currentNode.left);  
            if (currentNode.right != null)  
                queue.offer(currentNode.right);  
        }  
    }  

二叉树高度

    public int getHeight(){
        return getHeight(this.rootNode);
    }
    public int getHeight(TreeNode currNode){
        if (currNode==null){
            return 0;
        }
        int lHeight = getHeight(currNode.leftChild);
        int rHeight = getHeight(currNode.rightChild);
        return Math.max(lHeight,rHeight)+1;
    }

二叉树节点数量

 public int getSize(){
        return getSize(this.rootNode);
    }
    public int getSize(TreeNode currNode){
        if (currNode==null){
            return 0;
        }
        int lSize = getSize(currNode.leftChild);
        int rSize = getSize(currNode.rightChild);
        return lSize + rSize + 1;
    }

测试代码

package com.execlib;

import java.util.Stack;
import java.util.concurrent.atomic.AtomicInteger;

public class BinaryTreeTree {
    public TreeNode rootNode = null;
    /**
     * 树的建立
     */
    public class TreeNode{
        public TreeNode leftChild;
        public TreeNode rightChild;
        public Integer index;
        public T data;
        public TreeNode( T data) {
            this.data = data;
        }
        public TreeNode(Integer index, T data) {
            this.index = index;
            this.data = data;
        }

        @Override
        public String toString() {
            return "TreeNode{" +
                    "leftChild=" + leftChild +
                    ", rightChild=" + rightChild +
                    ", index=" + index +
                    ", data=" + data +
                    '}';
        }
    }
    /**
     * 构建二叉树
     *           A
     *     B         C
     * D      E         F
     */
    public void createBinaryTree(){
        System.out.println("           A");
        System.out.println("       /      \\");
        System.out.println("      B         C");
        System.out.println("    /   \\       \\");
        System.out.println(" D      E         F");
        TreeNode nodeA = new TreeNode(1, "A");
        this.rootNode = nodeA;
        TreeNode nodeB = new TreeNode(2, "B");
        TreeNode nodeC = new TreeNode(3, "C");
        TreeNode nodeD = new TreeNode(4, "D");
        TreeNode nodeE = new TreeNode(5, "E");
        TreeNode nodeF = new TreeNode(7, "F");
        nodeA.leftChild = nodeB;
        nodeA.rightChild = nodeC;
        nodeB.leftChild = nodeD;
        nodeB.rightChild = nodeE;
        nodeC.rightChild = nodeF;
        //nodeF.rightChild = new TreeNode(8,"G");
    }

    /**
     * 前序遍历反向生成二叉树
     * ABD##E##C#F
     */
    public TreeNode createBinaryTree(AtomicInteger dataIndex,T[] datas){
        if (dataIndex.get()>=datas.length||"#".equals(datas[dataIndex.get()])){
            return null;
        }
        TreeNode treeNode =  new TreeNode(dataIndex.get(), datas[dataIndex.get()]);
        if (this.rootNode == null){
            this.rootNode = treeNode;
        }
        dataIndex.incrementAndGet();
        treeNode.leftChild = createBinaryTree(dataIndex, datas);
        dataIndex.incrementAndGet();
        treeNode.rightChild = createBinaryTree(dataIndex, datas);
        return treeNode;
    }


    /**
     * 递归形式树的前中后序遍历
     */

    /**
     * 前序遍历 根 左 右
     */
    public void preOrder(TreeNode currNode){
        if (currNode==null)
            return;
        System.out.println(currNode.data);
        preOrder(currNode.leftChild);
        preOrder(currNode.rightChild);
    }

    /**
     *
     * 中序遍历 左 根 右
     */
    public void midOrder(TreeNode currNode){
        if (currNode == null)
            return;
        midOrder(currNode.leftChild);
        System.out.println(currNode.data);
        midOrder(currNode.rightChild);
    }

    /**
     * 后序遍历 左 右 根
     */
    public void afterOrder(TreeNode currNode){
        if (currNode==null)
            return;
        afterOrder(currNode.leftChild);
        afterOrder(currNode.rightChild);
        System.out.println(currNode.data);
    }



    /**
     * 非递归形式树的前中后序遍历
     */
    public void preNoneCycle(TreeNode currNode){
        Stack treeNodeStack = new Stack();
        treeNodeStack.push(currNode);
        while (!treeNodeStack.isEmpty()){
            TreeNode tempNode = treeNodeStack.pop();
            if (tempNode!=null)
                System.out.println(tempNode.data);
            if (tempNode.rightChild !=null)
                treeNodeStack.push(tempNode.rightChild);
            if (tempNode.leftChild !=null)
                treeNodeStack.push(tempNode.leftChild);
        }

    }
    public int getSize(){
        return getSize(this.rootNode);
    }
    public int getSize(TreeNode currNode){
        if (currNode==null){
            return 0;
        }
        int lSize = getSize(currNode.leftChild);
        int rSize = getSize(currNode.rightChild);
        return lSize + rSize + 1;
    }

    public int getHeight(){
        return getHeight(this.rootNode);
    }
    public int getHeight(TreeNode currNode){
        if (currNode==null){
            return 0;
        }
        int lHeight = getHeight(currNode.leftChild);
        int rHeight = getHeight(currNode.rightChild);
        return Math.max(lHeight,rHeight)+1;
    }


    public static void main(String[] args) {
        BinaryTreeTree testTree = new BinaryTreeTree();
        testTree.createBinaryTree();
        System.out.println("---------------");
        int height = testTree.getHeight();
        System.out.println("tree height :"+height);
        int size = testTree.getSize();
        System.out.println("tree size :"+size);
        System.out.println("---------------");
        System.out.println("tree preOrder :");
        testTree.preOrder(testTree.rootNode);
        System.out.println("tree midOrder :");
        testTree.midOrder(testTree.rootNode);
        System.out.println("tree afterOrder :");
        testTree.afterOrder(testTree.rootNode);
        System.out.println("tree preNoneCycle :");
        testTree.preNoneCycle(testTree.rootNode);

        System.out.println("create tree :");
        testTree.preOrder(testTree.createBinaryTree(new AtomicInteger(0),new String[]{"A","B","D","#","#","E","#","#","C","#","F"}));
    }
}

          A
       /      \
      B         C
    /   \       \
 D      E         F
---------------
tree height :3
tree size :6
---------------
tree preOrder :
A
B
D
E
C
F
tree midOrder :
D
B
E
A
C
F
tree afterOrder :
D
E
B
F
C
A
tree preNoneCycle :
A
B
D
E
C
F
create tree :
A
B
D
E
C
F

查找二叉树

节点
    public class SearchNode extends TreeNode{
        public SearchNode parent;
        public SearchNode(T data) {
            super(data);
        }

        public SearchNode(Integer index, T data) {
            super(index, data);
        }
    }
加入节点
 /**
     * 二叉树存放节点
     * @param data
     * @return
     */
    public TreeNode put(int data){
        SearchNode newNode = new SearchNode(data);
        if (this.rootNode == null){
            rootNode = newNode;
            return newNode;
        }
        TreeNode node = (SearchNode) rootNode;
        TreeNode parent = null;
        while (node!=null){
            parent = node;
           if (datanode.data){
               node = node.rightChild;
           }else {
               return node;
           }
        }
        if (parent.data>data)
            parent.leftChild =  newNode;
        else parent.rightChild = newNode;
        ((SearchNode)newNode).parent = (SearchNode) parent;
        return newNode;
    }
查找数据
   /**
     * 查找数据
     * @param data
     * @return
     */
    public TreeNode search(int data){
        TreeNode node = rootNode;
        while (node!=null){
            if (datanode.data){
                node = node.rightChild;
            }else {
                return node;
            }
        }
        return null;
    }
删除数据
/**
     * 删除数据并调整节点顺序
     * @param data
     * @return
     */
    public TreeNode delete(int data){
        SearchNode node = (SearchNode) search(data);
        if (node == null)
            return null;
        return delete(node);
    }

    /**
     * 删除节点
     * @param node
     * @return
     */
    private SearchNode delete(SearchNode node) {
        //没有左右孩子直接删除
        if (node.leftChild==null&&node.rightChild==null){
            SearchNode parent = node.parent;
            if (parent.leftChild==node){
                parent.leftChild = null;
            }else {
                parent.rightChild = null;
            }
            return node;
        }
        //只有左孩子
        if (node.leftChild!=null&&node.rightChild==null){
            SearchNode next = (SearchNode) node.leftChild;
            SearchNode parent = node.parent;
            if (parent.leftChild==node){
                parent.leftChild = next;
            }else {
                parent.rightChild = next;
            }
            return node;
        }
        //只有右孩子
        if (node.leftChild==null&&node.rightChild!=null){
            SearchNode next = (SearchNode) node.rightChild;
            SearchNode parent = node.parent;
            if (parent.leftChild==node){
                parent.leftChild = next;
            }else {
                parent.rightChild = next;
            }
            return node;
        }
        //有左右孩子 获取后继节点并删除后继然后将后继的值赋值给当前节点
        SearchNode nextNode = getNextNode(node);
        delete(nextNode);
        node.data = nextNode.data;
        return node;
    }

    /**
     * 获取某节点的后继节点
     * @param node
     * @return
     */
    private SearchNode getNextNode(SearchNode node) {
        //当前节点有右孩子
        if (node.rightChild!=null){
            node = (SearchNode) node.rightChild;
            while (node.leftChild!=null){
                node = (SearchNode) node.leftChild;
            }
            return node;
        }
        //当前节点没有右孩子
        SearchNode parent = node.parent;
        while (parent!=null&&node==parent.rightChild){
            node = parent;
            parent = parent.parent;
        }
        return parent;
    }
完整代码
package com.execlib;

public class BinarySearchTree extends BinaryTreeTree{

    public class SearchNode extends TreeNode{
        public SearchNode parent;
        public SearchNode(T data) {
            super(data);
        }

        public SearchNode(Integer index, T data) {
            super(index, data);
        }
    }
    /**
     * 二叉树存放节点
     * @param data
     * @return
     */
    public TreeNode put(int data){
        SearchNode newNode = new SearchNode(data);
        if (this.rootNode == null){
            rootNode = newNode;
            return newNode;
        }
        TreeNode node = (SearchNode) rootNode;
        TreeNode parent = null;
        while (node!=null){
            parent = node;
           if (datanode.data){
               node = node.rightChild;
           }else {
               return node;
           }
        }
        if (parent.data>data)
            parent.leftChild =  newNode;
        else parent.rightChild = newNode;
        ((SearchNode)newNode).parent = (SearchNode) parent;
        return newNode;
    }

    /**
     * 查找数据
     * @param data
     * @return
     */
    public TreeNode search(int data){
        TreeNode node = rootNode;
        while (node!=null){
            if (datanode.data){
                node = node.rightChild;
            }else {
                return node;
            }
        }
        return null;
    }

    /**
     * 删除数据并调整节点顺序
     * @param data
     * @return
     */
    public TreeNode delete(int data){
        SearchNode node = (SearchNode) search(data);
        if (node == null)
            return null;
        return delete(node);
    }

    /**
     * 删除节点
     * @param node
     * @return
     */
    private SearchNode delete(SearchNode node) {
        //没有左右孩子直接删除
        if (node.leftChild==null&&node.rightChild==null){
            SearchNode parent = node.parent;
            if (parent.leftChild==node){
                parent.leftChild = null;
            }else {
                parent.rightChild = null;
            }
            return node;
        }
        //只有左孩子
        if (node.leftChild!=null&&node.rightChild==null){
            SearchNode next = (SearchNode) node.leftChild;
            SearchNode parent = node.parent;
            if (parent.leftChild==node){
                parent.leftChild = next;
            }else {
                parent.rightChild = next;
            }
            return node;
        }
        //只有右孩子
        if (node.leftChild==null&&node.rightChild!=null){
            SearchNode next = (SearchNode) node.rightChild;
            SearchNode parent = node.parent;
            if (parent.leftChild==node){
                parent.leftChild = next;
            }else {
                parent.rightChild = next;
            }
            return node;
        }
        //有左右孩子 获取后继节点并删除后继然后将后继的值赋值给当前节点
        SearchNode nextNode = getNextNode(node);
        delete(nextNode);
        node.data = nextNode.data;
        return node;
    }

    /**
     * 获取某节点的后继节点
     * @param node
     * @return
     */
    private SearchNode getNextNode(SearchNode node) {
        //当前节点有右孩子
        if (node.rightChild!=null){
            node = (SearchNode) node.rightChild;
            while (node.leftChild!=null){
                node = (SearchNode) node.leftChild;
            }
            return node;
        }
        //当前节点没有右孩子
        SearchNode parent = node.parent;
        while (parent!=null&&node==parent.rightChild){
            node = parent;
            parent = parent.parent;
        }
        return parent;
    }

    public static void main(String[] args) {
        BinarySearchTree binarySearchTree = new BinarySearchTree();
        int[] ints = {50, 30, 20, 44, 88, 33, 87, 16, 7, 77};
        for (int i = 0; i < ints.length; i++) {
            binarySearchTree.put(ints[i]);
        }
        binarySearchTree.midOrder(binarySearchTree.rootNode);
        System.out.println("search result:"+binarySearchTree.search(88));

        binarySearchTree.delete(30);
        System.out.println("delete result:");
        binarySearchTree.midOrder(binarySearchTree.rootNode);
    }
}

测试结果
7
16
20
30
33
44
50
77
87
88
search result:TreeNode{leftChild=TreeNode{leftChild=TreeNode{leftChild=null, rightChild=null, index=null, data=77}, rightChild=null, index=null, data=87}, rightChild=null, index=null, data=88}
delete result:
7
16
20
33
44
50
77
87
88

你可能感兴趣的:(数据结构-二叉树)