7.3 向量的数量积与向量积

作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

文章目录

  • 向量的数量积
  • 向量的向量积

向量的数量积

  1. 定义:

设向量 a → \overrightarrow{a} a , b → \overrightarrow{b} b 的夹角为 θ \theta θ,称
∣ a → ∣ ∣ b → ∣ c o s |\overrightarrow{a}||\overrightarrow{b}|cos a ∣∣b cos θ \theta θ记作 a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b a → \overrightarrow{a} a b → \overrightarrow{b} b 数量积(点积、内积)

  1. 性质

(1) a → ⋅ a → \overrightarrow{a}\cdot\overrightarrow{a} a a = ∣ a → ∣ 2 |\overrightarrow{a}|^{2} a 2
(2) a → \overrightarrow{a} a , b → \overrightarrow{b} b 为两个非零向量,则有 a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b =0 ⟺ \Longleftrightarrow a → ⊥ b → \overrightarrow{a}\bot\overrightarrow{b} a b

注:由于零向量的方向是任意的,所有规定零向量与任何向量都垂直.

  1. 运算规律

(1)交换律: a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b = b → ⋅ a → \overrightarrow{b}\cdot\overrightarrow{a} b a
(2)结合律: ( λ a → ) ⋅ b → (\lambda\overrightarrow{a})\cdot\overrightarrow{b} (λa )b = a → ⋅ ( λ b → ) \overrightarrow{a}\cdot(\lambda\overrightarrow{b}) a (λb )= λ ( a → ⋅ b → ) \lambda(\overrightarrow{a}\cdot\overrightarrow{b}) λ(a b )
                  ~~~~~~~~~~~~~~~~~                   ( λ a → ) ⋅ ( μ b → ) (\lambda\overrightarrow{a})\cdot(\mu\overrightarrow{b}) (λa )(μb )= λ ( a → ⋅ ( λ b → ) ) \lambda(\overrightarrow{a}\cdot(\lambda\overrightarrow{b})) λ(a (λb ))= λ μ ( a → ⋅ b → ) \lambda\mu(\overrightarrow{a}\cdot\overrightarrow{b}) λμ(a b )(其中 λ , μ \lambda,\mu λμ为实数)
(3)分配律: ( a → + b → ) ⋅ c → (\overrightarrow{a}+\overrightarrow{b})\cdot\overrightarrow{c} (a +b )c = a → ⋅ c → \overrightarrow{a}\cdot\overrightarrow{c} a c + b → ⋅ c → \overrightarrow{b}\cdot\overrightarrow{c} b c

  1. 坐标表示
  • a → \overrightarrow{a} a = a x i → + a y j → + a z k → a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k} axi +ayj +azk , b → \overrightarrow{b} b = b x i → + b y j → + b z k → b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k} bxi +byj +bzk ,则
    a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b = a x b x + a y b y + a z b z a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z} axbx+ayby+azbz

  • 两向量夹角公式
    a → \overrightarrow{a} a , b → \overrightarrow{b} b 为两个非零向量时,由于 a → ⋅ b → \overrightarrow{a}\cdot\overrightarrow{b} a b = ∣ a → ∣ ∣ b → ∣ c o s |\overrightarrow{a}||\overrightarrow{b}|cos a ∣∣b cos θ \theta θ,从而
    c o s θ cos\theta cosθ= a → ⋅ b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} a ∣∣b a b = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2 \frac{a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}}{ \sqrt{a^{2}_{x}+a^{2}_{y}+a^{2}_{z} }\sqrt{b^{2}_{x}+b^{2}_{y}+b^{2}_{z} }} ax2+ay2+az2 bx2+by2+bz2 axbx+ayby+azbz

  • 两向量垂直的充要条件
    a → ⊥ b → \overrightarrow{a}\bot\overrightarrow{b} a b ⟺ \Longleftrightarrow a x b x + a y b y + a z b z = 0 a_{x}b_{x}+a_{y}b_{y}+a_{z} b_{z}=0 axbx+ayby+azbz=0


向量的向量积

  1. 定义

设向量 a → \overrightarrow{a} a , b → \overrightarrow{b} b 的夹角为 θ \theta θ,定义
向量 c → \overrightarrow{c} c :①方向: c → ⊥ a → \overrightarrow{c}\bot\overrightarrow{a} c a , c → ⊥ b → \overrightarrow{c}\bot\overrightarrow{b} c b 且符合右手规则
              ~~~~~~~~~~~~~               ②模: ∣ c → ∣ |\overrightarrow{c}| c = ∣ a → ∣ ∣ b → ∣ s i n |\overrightarrow{a}||\overrightarrow{b}|sin a ∣∣b sin θ \theta θ
c → \overrightarrow{c} c a → 与 b → \overrightarrow{a}与\overrightarrow{b} a b 为的向量积(叉积),记作 c → \overrightarrow{c} c = a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b

  1. 性质

(1) a → × a → \overrightarrow{a}×\overrightarrow{a} a ×a = 0 → \overrightarrow{0} 0
(2) a → \overrightarrow{a} a , b → \overrightarrow{b} b 为两个非零向量,则有 a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b =0 ⟺ \Longleftrightarrow a → ∥ b → \overrightarrow{a}\parallel\overrightarrow{b} a b

  1. 运算规律

(1) a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b =- b → × a → \overrightarrow{b}×\overrightarrow{a} b ×a
(2)结合律: ( λ a → ) × b → (\lambda\overrightarrow{a})×\overrightarrow{b} (λa )×b = a → × ( λ b → ) \overrightarrow{a}×(\lambda\overrightarrow{b}) a ×(λb )= λ ( a → × b → ) \lambda(\overrightarrow{a}×\overrightarrow{b}) λ(a ×b )
(3)分配律: ( a → + b → ) × c → (\overrightarrow{a}+\overrightarrow{b})×\overrightarrow{c} (a +b )×c = a → × c → \overrightarrow{a}×\overrightarrow{c} a ×c + b → × c → \overrightarrow{b}×\overrightarrow{c} b ×c

  1. 坐标表示
  • a → \overrightarrow{a} a = a x i → + a y j → + a z k → a_{x}\overrightarrow{i}+a_{y}\overrightarrow{j}+a_{z}\overrightarrow{k} axi +ayj +azk , b → \overrightarrow{b} b = b x i → + b y j → + b z k → b_{x}\overrightarrow{i}+b_{y}\overrightarrow{j}+b_{z}\overrightarrow{k} bxi +byj +bzk ,则
    a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b = ( a y b z − a z b y ) i → + ( a z b x − a x b z ) j → + ( a x b y − a y b x ) k → (a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j}+(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k} (aybzazby)i +(azbxaxbz)j +(axbyaybx)k
  • 两个向量积的行列式表示
    a → × b → \overrightarrow{a}×\overrightarrow{b} a ×b = ( a y b z − a z b y ) i → + ( a z b x − a x b z ) j → + ( a x b y − a y b x ) k → (a_{y}b_{z}-a_{z}b_{y})\overrightarrow{i}+(a_{z}b_{x}-a_{x} b_{z})\overrightarrow{j} +(a_{x}b_{y}-a_{y} b_{x})\overrightarrow{k} (aybzazby)i +(azbxaxbz)j +(axbyaybx)k = ∣ i → j → k → a x a y a z b x b y b z ∣ \left| \begin{array}{cccc} \overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\ a_{x}&a_{y}&a_{z}\\ b_{x}&b_{y}&b_{z}\\ \end{array} \right| i axbxj aybyk azbz

你可能感兴趣的:(高等数学(下),矩阵,抽象代数,几何学,学习方法,考研)