kmeans及模型评估指标_机器学习模型评估指标示例

机器学习模型评估指标示例

选择正确的度量来评估机器学习模型

我们什么时候评估我们的机器学习模型呢?答案不是只有一次。通常,我们在实际的数据科学工作流中两次使用机器学习模型验证指标:

模型比较:为您的任务选择最佳机器学习(ML)模型

模型改进:调整超参数

为了更清楚地了解这两者之间的区别,让我通过机器学习(ML)实现的工作流程来解释。在为任务y设置所有特征X后,您可以准备多个机器学习模型作为候选。

那么你怎么才能最终为你的任务选择一个呢?是的,这是使用模型验证度量的第一点。Scikit-learn提供了一些快捷方法来比较模型,比如cross - validation。

在您选择了一个准确度最好的机器学习模型后,您将跳转到超参数调优部分,以提高精度和通用性。这里是您将使用这些度量的第二点。

在本文中,我试图制作机器学习模型评估指标的总结。

交叉验证用于模型比较

机器学习模型评估指标示例

训练/测试拆分和交叉验证的可视化表示

我们拆分数据的原因和方式的起点是泛化。因为我们构建机器学习模型的目标是使用未来未知数据的真实实现。因此,我们不需要过度拟合过去数据的无用模型。

Holdout 方法

from sklearn.model_selection import train_test_split

from skle

你可能感兴趣的:(kmeans及模型评估指标)