比较基因组学分析3:特异节点基因家族富集分析(非模式物种GO/KEEG富集分析)

比较基因组学分析目录

1:单拷贝基因构建物种树以及计算分化时间
2:基因家族收缩与扩张分析
3:特异节点富集分析

1.前言

上次讲到基因家族的收缩扩张分析,这次我们以某个节点为切入点,进行特异节点的功能富集分析
其实这篇教程适用于所有的非模式物种(没有现成的GO/KEGG库的物种)的富集分析
物种特异的比较简单就不进行实践了

2.节点选择

这次选择一个进化上比较重要的节点,水生到陆生的过程,对应进化树为node25


进化树

3.获取目的基因

主要是目标基因与背景基因的选择,目标基因可以是该节点显著扩张的基因家族包含的所有物种基因,背景基因一般为该节点包含的Orthogroup

3.1 获取node25显著扩张的基因

cat Gamma_p0.05change.tab | cut -f1,27 | grep "+[1-9]" | cut -f1 > node25significant.expand
#node25显著扩张的orthogroupsID
grep -f node25significant.expand Orthogroups.txt |sed "s/ /\n/g" | grep -E "Ath|Csa|Vvi|Aof|Osa|Zma|Nco|Atr|Tpl|Cri|Smo|Mpo|Ppa" | sort | uniq > node25significant.expand.genes

目前我们得到了需要进行富集分析的目标基因,接下来是背景基因的选择

3.2 node25背景基因选择

awk 'NR!=1 && $27>0 {print $0}' Gamma_count.tab | cut -f1 > node25.orthogroups
#node25中存在基因的orthogroupsID
grep -f node25.orthogroups Orthogroups.txt |sed "s/ /\n/g" | grep -E "Ath|Csa|Vvi|Aof|Osa|Zma|Nco|Atr|Tpl|Cri|Smo|Mpo|Ppa" | sort | uniq > node25.genes

node25.genesnode25significant.expand.genes就是我们进行富集分析所需要的基因号,接下来就是构建背景基因的GO和KEGG注释,由于是无参物种,所以我们需要自己构建

4 背景基因的GO和KEGG注释

4.1 GO/KEGG注释

使用eggnog对背景基因进行注释

seqkit grep -f node25.genes ../../../allpep.fa > node25background.fa 
#提取背景基因,需要严格注意基因数是否一致
emapper.py -m diamond -i node25background.fa -o node25 --cpu 16

最后我们拿到node25.emapper.annotations文件,将前三行和#删除

node25.emapper.annotations

4.2 GO注释库构建

获取GO的注释信息:下载地址:http://purl.obolibrary.org/obo/go/go-basic.obo 之后进行修饰

grep "^id:" go-basic.obo |awk '{print $2}' > GO.id
grep "^name:" go-basic.obo |awk '{print $2}' > GO.name 
grep "^namespace:" go-basic.obo |awk '{print $2}' > GO.class
paste GO.id GO.name GO.class -d "\t" > GO.library

文件一共有三列

GO:1903040  exon-exon junction complex assembly biological process
GO:1903045  neural crest cell migration involved in sympathetic nervous system development  biological process
GO:1903046  meiotic cell cycle process  biological process
GO:1903043  positive regulation of chondrocyte hypertrophy  biological process
GO:1903044  protein localization to membrane raft   biological process
GO:1903049  negative regulation of acetylcholine-gated cation channel activity  biological process
GO:1903047  mitotic cell cycle process  biological process
GO:1903048  regulation of acetylcholine-gated cation channel activity   biological process
GO:1903012  positive regulation of bone development biological process
GO:1903013  response to differentiation-inducing factor 1   biological process
GO:1903010  regulation of bone development  biological process
GO:1903011  negative regulation of bone development biological process
GO:1903016  negative regulation of exo-alpha-sialidase activity biological process
GO:1903017  positive regulation of exo-alpha-sialidase activity biological process
GO:1903014  cellular response to differentiation-inducing factor 1  biological process
GO:1903015  regulation of exo-alpha-sialidase activity  biological process
GO:1903018  regulation of glycoprotein metabolic process    biological process
GO:1903019  negative regulation of glycoprotein metabolic process   biological process
GO:1903020  positive regulation of glycoprotein metabolic process   biological process
GO:1903023  regulation of ascospore-type prospore membrane assembly biological process

4.3 KEGG注释库构建

需要下载ko00001.json: https://www.genome.jp/kegg-bin/get_htext?ko00001

# 需要下载 json文件(这是是经常更新的)
# https://www.genome.jp/kegg-bin/get_htext?ko00001
# 代码来自:http://www.genek.tv/course/225/task/4861/show
library(jsonlite)
library(purrr)
library(RCurl)
library(dplyr)
library(stringr)
 kegg <- function(json = "ko00001.json") {
    pathway2name <- tibble(Pathway = character(), Name = character())
    ko2pathway <- tibble(Ko = character(), Pathway = character())
    
    kegg <- fromJSON(json)
    
    for (a in seq_along(kegg[["children"]][["children"]])) {
      A <- kegg[["children"]][["name"]][[a]]
      
      for (b in seq_along(kegg[["children"]][["children"]][[a]][["children"]])) {
        B <- kegg[["children"]][["children"]][[a]][["name"]][[b]] 
        
        for (c in seq_along(kegg[["children"]][["children"]][[a]][["children"]][[b]][["children"]])) {
          pathway_info <- kegg[["children"]][["children"]][[a]][["children"]][[b]][["name"]][[c]]
          
          pathway_id <- str_match(pathway_info, "ko[0-9]{5}")[1]
          pathway_name <- str_replace(pathway_info, " \\[PATH:ko[0-9]{5}\\]", "") %>% str_replace("[0-9]{5} ", "")
          pathway2name <- rbind(pathway2name, tibble(Pathway = pathway_id, Name = pathway_name))
          
          kos_info <- kegg[["children"]][["children"]][[a]][["children"]][[b]][["children"]][[c]][["name"]]
          
          kos <- str_match(kos_info, "K[0-9]*")[,1]
          
          ko2pathway <- rbind(ko2pathway, tibble(Ko = kos, Pathway = rep(pathway_id, length(kos))))
        }
      }
    }
    colnames(ko2pathway) <- c("KO","Pathway")
    save(pathway2name, ko2pathway, file = "kegg_info.RData")
    write.table(pathway2name,"KEGG.library",sep="\t",row.names = F)
  }
  
  
kegg(json = "ko00001.json")

4.4 背景注释构建

主要是将自己的基因集与注释库结合

library(clusterProfiler)
library(dplyr)
library(stringr)
options(stringsAsFactors = F)
##===============================STEP1:GO注释生成=======================
#自己构建的话,首先需要读入文件
egg <- read.delim("node25.emapper.annotations",header = T,sep="\t")
egg[egg==""]<-NA  #将空行变成NA,方便下面的去除
#从文件中挑出基因query与eggnog注释信息
##gene_info <- egg %>% 
##  dplyr::select(GID = query, GENENAME = eggNOG_OGs) %>% na.omit()
#挑出query_name与GO注释信息
gterms <- egg %>%
  dplyr::select(query, GOs) %>% na.omit()
gene_ids <- egg$query
eggnog_lines_with_go <- egg$GOs!= ""
eggnog_lines_with_go
eggnog_annoations_go <- str_split(egg[eggnog_lines_with_go,]$GOs, ",")
gene2go <- data.frame(gene = rep(gene_ids[eggnog_lines_with_go],
                                    times = sapply(eggnog_annoations_go, length)),
                         term = unlist(eggnog_annoations_go))
names(gene2go) <- c('gene_id', 'ID')
go2name <- read.delim('GO.library', header = FALSE, stringsAsFactors = FALSE)
names(go2name) <- c('ID', 'Description', 'Ontology')

go_anno <- merge(gene2go, go2name, by = 'ID', all.x = TRUE)

## 将GO注释信息保存
save(go_anno,file = "node25_GO.rda")

##===============================STEP2:KEGG注释生成=======================
gene2ko <- egg %>%
  dplyr::select(GID = query, KO = KEGG_ko) %>%
  na.omit()
pathway2name <- read.delim("KEGG.library")
colnames(pathway2name)<-c("Pathway","Name")
gene2ko$KO <- str_replace(gene2ko$KO, "ko:","")
gene2pathway <- gene2ko %>% left_join(ko2pathway, by = "KO") %>% 
  dplyr::select(GID, Pathway) %>%
  na.omit()
kegg_anno<- merge(gene2pathway,pathway2name,by = 'Pathway', all.x = TRUE)[,c(2,1,3)]
colnames(kegg_anno) <- c('gene_id','pathway_id','pathway_description')
save(kegg_anno,file = "node25_KEGG.rda")

4.5 GO/KEEG富集分析

利用生成的node25_GO.rdanode25_KEGG.rda、以及之前的node25significant.expand.genes文件进行富集分析
我在分析的时候没有设置p的阈值,输出了所有的富集结果,毕竟作图也只需要TOP10或者TOP20,大家按照需求设定

##===============================STEP3:GO富集分析=================
#目标基因列表(全部基因)
gene_select <- read.delim(file = 'node25significant.expand.genes', stringsAsFactors = FALSE,header = F)$V1
#GO 富集分析
#默认以所有注释到 GO 的基因为背景集,也可通过 universe 参数输入背景集
#默认以 p<0.05 为标准,Benjamini 方法校正 p 值,q 值阈值 0.2
#默认输出 top500 富集结果
#如果想输出所有富集结果(不考虑 p 值阈值等),将 p、q 等值设置为 1 即可
#或者直接在 enrichResult 类对象中直接提取需要的结果
go_rich <- enricher(gene = gene_select,
                    TERM2GENE = go_anno[c('ID', 'gene_id')], 
                    TERM2NAME = go_anno[c('ID', 'Description')], 
                    pvalueCutoff = 1, 
                    pAdjustMethod = 'BH', 
                    qvalueCutoff = 1
                   )
#输出默认结果,即根据上述 p 值等阈值筛选后的

tmp <- merge(go_rich, go2name[c('ID', 'Ontology')], by = 'ID')
tmp <- tmp[c(10, 1:9)]
tmp <- tmp[order(tmp$pvalue), ]
write.table(tmp, 'node6expand.xls', sep = '\t', row.names = FALSE, quote = FALSE)

##===============================STEP4:KEGG注释=================
gene_select <- read.delim('node25significant.expand.genes', stringsAsFactors = FALSE,header = F)$V1
#KEGG 富集分析
#默认以所有注释到 KEGG 的基因为背景集,也可通过 universe 参数指定其中的一个子集作为背景集
#默认以 p<0.05 为标准,Benjamini 方法校正 p 值,q 值阈值 0.2
#默认输出 top500 富集结果
kegg_rich <- enricher(gene = gene_select,
                      TERM2GENE = kegg_anno[c('pathway_id', 'gene_id')], 
                      TERM2NAME = kegg_anno[c('pathway_id', 'pathway_description')], 
                      pvalueCutoff = 1, 
                      pAdjustMethod = 'BH', 
                      qvalueCutoff = 1, 
                      maxGSSize = 500)

#输出默认结果,即根据上述 p 值等阈值筛选后的
write.table(kegg_rich, 'node25significant.expand.KEGG.xls', sep = '\t', row.names = FALSE, quote = FALSE)

需要注意生成的文件中有一些term可能是重复的,比如GO富集结果的16,17行,仔细看geneID那一列就会发现两行的基因是完全一样的,需要删掉一个。还有一点就是在GO/KEGG富集的结果中,有一些是动物相关的(KEGG结果的第一行),这些也请酌情考虑

GO结果

KEGG结果

5 GO/KEGG绘图

此次使用TOP10的term进行绘图,看一下在陆生植物出现的关键进化节点主要是哪些基因功能发生了大规模扩张

library(ggplot2)
pathway = read.delim("node25significant.expand.GO.xls",header = T,sep="\t")
pathway$GeneRatio<- pathway[,10]/54700 ##这个54700是GeneRatio的那个数值,自己修改

pathway$log<- -log10(pathway[,6])

library(dplyr)
library(ggrepel)
GO <- arrange(pathway,pathway[,6])
GO_dataset <- GO[1:10,]
#按照PValue从低到高排序[升序]
GO_dataset$Description<- factor(GO_dataset$Description,levels = rev(GO_dataset$Description))
GO_dataset$GeneRatio <- as.numeric(GO_dataset$GeneRatio)
GO_dataset$GeneRatio
GO_dataset$log
#图片背景设定
mytheme <- theme(axis.title=element_text(face="bold", size=8,colour = 'black'), #坐标轴标题
                 axis.text.y = element_text(face="bold", size=6,colour = 'black'), #坐标轴标签
                 axis.text.x = element_text(face ="bold",color="black",angle=0,vjust=1,size=8),
                 axis.line = element_line(size=0.5, colour = 'black'), #轴线
                 panel.background = element_rect(color='black'), #绘图区边框
                 plot.title = element_text(face="bold", size=8,colour = 'black',hjust = 0.8),
                 legend.key = element_blank() #关闭图例边框
)

#绘制GO气泡图
p <- ggplot(GO_dataset,aes(x=GeneRatio,y=Description,colour=log,size=Count,shape=Ontology))+
  geom_point()+
  scale_size(range=c(2, 8))+
  scale_colour_gradient(low = "#52c2eb",high = "#EA4F30")+
  theme_bw()+
  labs(x='Fold Enrichment',y='GO Terms', #自定义x、y轴、标题内容
       title = 'Enriched GO Terms')+
  labs(color=expression(-log[10](pvalue)))+
  theme(legend.title=element_text(size=8), legend.text = element_text(size=14))+
  theme(axis.title.y = element_text(margin = margin(r = 50)),axis.title.x = element_text(margin = margin(t = 20)))+
  theme(axis.text.x = element_text(face ="bold",color="black",angle=0,vjust=1))
plot <- p+mytheme
plot
#保存图片
ggsave(plot,filename = "node25GO.pdf",width = 210,height = 210,units = "mm",dpi=300)
ggsave(plot,filename = "node25GO.png",width = 210,height = 210,units = "mm",dpi=300)
 

KEGG同理,大家修改运行参数和输入文件即可

pathway = read.delim("node25significant.expand.KEGG.xls",header = T,sep="\t")
pathway$GeneRatio<- pathway[,9]/31537

pathway$log<- -log10(pathway[,5])

library(dplyr)
library(ggrepel)
GO <- arrange(pathway,pathway[,5])
GO_dataset <- GO[1:10,]

#Pathway列最好转化成因子型,否则作图时ggplot2会将所有Pathway按字母顺序重排序
#将Pathway列转化为因子型
GO_dataset$Description<- factor(GO_dataset$Description,levels = rev(GO_dataset$Description))
GO_dataset$GeneRatio <- as.numeric(GO_dataset$GeneRatio)
GO_dataset<- arrange(GO_dataset,GO_dataset[,5])
GO_dataset$GeneRatio
GO_dataset$log
#图片背景设定
mytheme <- theme(axis.title=element_text(face="bold", size=8,colour = 'black'), #坐标轴标题
                 axis.text.y = element_text(face="bold", size=6,colour = 'black'), #坐标轴标签
                 axis.text.x = element_text(face ="bold",color="black",angle=0,vjust=1,size=8),
                 axis.line = element_line(size=0.5, colour = 'black'), #轴线
                 panel.background = element_rect(color='black'), #绘图区边框
                 plot.title = element_text(face="bold", size=8,colour = 'black',hjust = 0.8),
                 legend.key = element_blank() #关闭图例边框
)

#绘制KEGG气泡图
p <- ggplot(GO_dataset,aes(x=GeneRatio,y=Description,colour=log,size=Count))+
  geom_point()+
  scale_size(range=c(2, 8))+
  scale_colour_gradient(low = "#52c2eb",high = "#EA4F30")+
  theme_bw()+
  labs(x='Fold Enrichment',y='KEEG Terms', #自定义x、y轴、标题内容
       title = 'Enriched KEEG Terms')+
  labs(color=expression(-log[10](pvalue)))+
  theme(legend.title=element_text(size=8), legend.text = element_text(size=14))+
  theme(axis.title.y = element_text(margin = margin(r = 50)),axis.title.x = element_text(margin = margin(t = 20)))+
  theme(axis.text.x = element_text(face ="bold",color="black",angle=0,vjust=1))
plot <- p+mytheme
plot
#保存图片
ggsave(plot,filename = "node25KEGG.pdf",width = 210,height = 210,units = "mm",dpi=300)
ggsave(plot,filename = "node25KEGG.png",width = 210,height = 210,units = "mm",dpi=300)

最后我们可以看到,在GO富集中,最显著的是水运输相关功能,KEGG富集中,最显著的是昼夜节律,大家觉得陆生植物的进化和这两个功能有没有关系?欢迎讨论

GO注释

KEGG注释

6 结果整理

结合这三篇推文的结果,我们可以整理一张主图


结果

总结

比较基因组学分析的基本内容已经介绍完了,如果说有遗漏的内容那应该就是加倍化事件,由于本次使用的数据集跨度过大所以没有增加WGD的分析,大家有什么问题欢迎交流

如果觉得有帮助欢迎在博客打赏

你可能感兴趣的:(比较基因组学分析3:特异节点基因家族富集分析(非模式物种GO/KEEG富集分析))