卷积神经网络经典论文引用

注意:基于GB/T 7714格式,论文发表时间不等于提出时间。

(1)Lenet(1998)

[1] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

(2)Alexnet(2012)

[1] Krizhevsky A ,  Sutskever I ,  Hinton G . ImageNet Classification with Deep Convolutional Neural Networks[J]. Advances in neural information processing systems, 2012, 25(2).

(3)VGG(2014)

[1] Simonyan K ,  Zisserman A . Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014.

(4)NiN(2014)

[1] Lin M ,  Chen Q ,  Yan S . Network In Network[C]// ICLR. 2014.

(5)GoogLenet(2014)

[1] Szegedy C ,  Wei L ,  Jia Y , et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015.

(6)批量归一化(2015)

[1] Ioffe S ,  Szegedy C . Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[J]. JMLR.org, 2015.

(7)Resnet(2015)

[1] He K ,  Zhang X ,  Ren S , et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016.

(8)Densenet(2017)

[1] Huang G ,  Liu Z ,  Laurens V , et al. Densely Connected Convolutional Networks[J]. IEEE Computer Society, 2016.

你可能感兴趣的:(cnn,深度学习,人工智能)