- 大模型+智能代理:自动化测试的终极组合?
测试者家园
软件测试质量效能人工智能人工智能软件测试质量效能职场和发展AI赋能智能体LLM
用ChatGPT做软件测试在软件测试领域,自动化测试的目标一直是提高测试效率、减少人工干预、提升缺陷发现率。然而,传统自动化测试仍然面临诸多挑战,例如脚本维护成本高、难以应对动态UI变化、测试数据生成受限,以及难以覆盖复杂业务逻辑。近年来,大模型(LLM,LargeLanguageModel)+智能代理(Agent)的结合,为自动化测试带来了新的可能性。这种“智能测试代理”能够利用大模型的自然语言
- 【PCDN】2020架构: 提高穿透和分享、BGP协议
等风来不如迎风去
传输探索实践架构服务器运维
小溪流科技自研海外PCDN系统技术架构与演进转载自腾讯云文/张道远整理/核心组网我们自己的P2P组网模型。我们采用了树形组网,但是我们规避优化了传统树形模型的缺点。为防止延时过高,我们在调度时会严格控制树形高度。为弥补父节点掉线造成孤儿状态的不足,我们使系统中每个节点都首先从CDN拉流。如果出现父节点掉线的情况,它立即向服务器补片,同时触发新的组网。对于纯粹的消费者模型,我们目前有两种方案,其中一
- 大语言模型原理与工程实践:大语言模型强化对齐
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:大语言模型强化对齐作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的迅猛发展,大语言模型(LargeLanguageModels,LLMs)如GPT-3、LaMDA等,在自然语言处理(NLP)领域取得了显著的突破。这些模型在问答、翻译、文本生成等方面展现出惊人的能力,但同时也引发了
- LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题
ZhangJiQun&MXP
2021AIpython2024大模型以及算力2021数字交易数字资产语言模型安全人工智能机器学习自然语言处理算法
LLM对齐方法作用:主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题对齐方法(AlignmentMethods)主要解决大型语言模型(LLMs)输出与人类价值观、需求和安全规范不一致的问题。其核心目标是让模型生成的内容更符合人类预期,同时确保伦理合规性和实用性。以下是对齐方法解决的具体问题及典型场景:1.安全性与伦理问题问题:基础LLMs可能生成有害内容(如暴力、歧视、
- 【AI热点】Manus技术细致洞察报告(篇2)
碣石潇湘无限路
人工智能
针对大家对Manus产品褒贬不一的现象,基于近期对Manus的多方实测、公开信息与开源竞品的比对分析而撰写,旨在为从业者、技术爱好者以及潜在用户提供一个较为系统、专业的视角。报告将围绕Manus的核心原理、功能特点、技术亮点、常见应用场景与不足,以及与其他Agent产品和开源方案的对比进行深入探讨。1.引言与背景1.1产品崛起与「全自主通用Agent」的概念自2023年底至2024年初,大模型及其
- 安科瑞ACCU-100微电网协调控制器:助力绿色能源系统运行
安科瑞蒋静
能源
随着全球能源结构的转型和可再生能源的快速发展,微电网作为一种新型的电力系统,逐渐成为解决分布式能源接入、提高能源利用效率的重要手段。微电网不仅能够实现新能源的就地消纳,还能有效提高电网的稳定性和可靠性。在这一背景下,安科瑞电气股份有限公司推出的ACCU-100微电网协调控制器,凭借其强大的功能和灵活的配置,成为微电网系统中的核心控制设备。一、产品概述ACCU-100微电网协调控制器是一款应用于微电
- 鸿蒙HarmonyOS开发系列:WebSocket消息发送应用示例
太空人_喜之郎
HarmonyOS鸿蒙OpenHarmonyharmonyos华为前端linux鸿蒙移动开发程序员
1.WebSocket简介WebSocket协议最初于2011年通过RFC6455完成了标准定义,后来又通过RFC7936、RFC8307、RFC8441等标准对协议进行了完善。WebSocket位于网络分层模型的应用层,是建立在TCP之上的双向通讯协议,可以在一个TCP连接上进行全双工通信;和HTTP不同的是,WebSocket通讯需要服务端和客户端先通过握手连接,连接成功后才能相互通信。2.W
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 第20篇:从零开始构建NLP项目之电商用户评论分析:模型训练阶段
Gemini技术窝
自然语言处理人工智能深度学习AIGC机器学习nlplangchain
大家好,今天我们继续探讨如何从零开始构建一个NLP项目,特别是电商用户评论分析中的模型训练阶段。模型训练是NLP项目的核心环节,通过合理的调参和优化,可以显著提升模型性能。本文将详细介绍模型训练的步骤,并展示如何使用LangChain库进行模型训练、调参和优化。文章目录项目的背景和目标模型训练的详细步骤安装依赖包流程图1.准备数据2.定义模型3.训练模型4.评估模型5.调参与优化常见错误和注意事项
- MyBatis注解开发之一对多查询
我心向阳iu
#MybatisJava面试知识点精讲mybatisjavamysql
文章目录0.MyBatis的注解实现复杂映射开发1.一对多查询1.1一对多查询的模型1.2一对多查询的语句1.3创建StudentMapper接口1.4使用注解配置Mapper1.5测试类1.6一对多配置总结0.MyBatis的注解实现复杂映射开发实现复杂关系映射之前我们可以在映射文件中通过配置来实现,使用注解开发后,我们可以使用@Results注解,@Result注解,@One注解,@Many注
- 79.HarmonyOS NEXT 手势操作模型详解:移动、缩放与旋转的实现原理
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT手势操作模型详解:移动、缩放与旋转的实现原理1.模型概述这组模型类主要用于处理手势交互中的各种变换操作,包括:位置控制(PositionModel)偏移计算(OffsetModel)旋转处理(RotateModel)缩放控制(Scale
- 使用yolo训练自己的模型数据遇到的问题
次次皮
YOLO深度学习人工智能
1、报错:NolabelsfoundinD:\xxx\valid\labels.cache查找网上的文章大多都是说文件目录没按规定创建,但我检查了我的目录没问题,后来发现是labels文件夹里的txt文件和images文件夹的图片没有一一对应,对应好之后问题解决2、解决完上个问题之后还是不报上面的错了但还是FatalPythonerror:Aborted;Restartingkernel...检查
- 中国首款AI原生IDE:字节跳动Trae国内版深度解析与实践指南
代码的建筑师
学习记录模型学习笔记AIIDETrae字节跳动AI代码编辑器
一、Trae国内版重磅发布:中国AI编程新标杆2025年3月3日,字节跳动正式推出国内首个AI原生集成开发环境(AIIDE)——Trae国内版。作为对标Cursor的国产工具,Trae以动态智能协作为核心,重新定义开发者与AI的协同模式。其核心目标是通过深度集成AI能力,帮助开发者从“工具使用者”向“AI协同创新者”转型,显著提升全流程开发效率。关键发布亮点:模型支持:搭载字节自研的Doubao-
- RocketMQ、Kafka、RabbitMQ,如何选型?
大梦谁先觉i
中间件SpringbootSpringCloudrocketmqkafkarabbitmq
如何根据应用场景选择合适的消息中间件?分布式、微服务、高并发架构中,消息队列(MessageQueue,简称MQ)扮演着至关重要的角色。消息队列用于实现系统间的异步通信、解耦、削峰填谷等功能。目前常见的MQ实现包括RabbitMQ、RocketMQ和Kafka。RocketMQ、Kafka、RabbitMQ如何选择?三大MQ的简单对比特性RabbitMQRocketMQKafka公司/社区Rabb
- 前端开发:Web蜜罐详解
三掌柜666
前端网络安全
前言在当今数字化时代,网络安全威胁日益复杂,攻击手段层出不穷。对于前端开发人员来说,不仅要关注代码的性能和用户体验,还需要具备应对安全威胁的能力。在网络安全领域,Web蜜罐作为一种主动防御技术,正逐渐受到关注,它通过模拟真实的Web应用程序,吸引攻击者并记录其行为,为安全专家提供了宝贵的情报。对于前端开发人员来说,了解Web蜜罐的工作原理、特点和应用场景具有重要意义。那么本文就来探讨Web蜜罐的工
- Angular 15升级指南:解决Polyfills错误
t0_54program
编程问题解决手册angular.jsjavascript前端个人开发
引言最近,Angular15正式发布,带来了许多新特性和改进。然而,在升级过程中,开发者们常常会遇到一些迁移问题。本文将详细讨论在升级到Angular15时,如何处理polyfills.ts文件引发的错误,并提供一个实际的解决方案。问题背景在升级Angular14到Angular15的过程中,很多开发者可能已经执行了如下命令:ngupdate@angular/core@15@angular/cli
- 大模型火爆 2025:LLaMA、Qwen、DeepSeek 核心原理+就业秘籍,快速入门 AI 工程师
weixin_40941102
llama人工智能
1.大模型核心原理:从零开始理解AI模型这些是大型语言模型(LLMs)的核心技术,适合初学者逐步深入学习。以下是详细拆解,让小白也能掌握:LLaMA系列模型核心原理详解:什么是LLaMA?:LLaMA是一个基于人工智能的语言模型,像一个超级聪明的聊天机器人,能理解和生成人类语言。它由Meta公司开发,类似ChatGPT,但更开源、灵活。核心原理:Transformer架构:想象一个工厂流水线,LL
- 【AI热点】MCP协议深度洞察报告
碣石潇湘无限路
人工智能php开发语言
摘要人工智能技术飞速发展,大型语言模型(LLM)如何高效、安全地利用外部数据和工具成为关键问题。模型上下文协议(ModelContextProtocol,简称MCP)是一种由Anthropic于2024年底提出的开放标准协议。它通过统一的客户端-服务器架构,为AI应用与文件系统、数据库、第三方API等外部资源之间提供标准化、安全的双向通信接口。本文将深入解析MCP协议的基本概念和背景、架构设计(通
- 【AI热点】OpenAI新发布API技术深度洞察
碣石潇湘无限路
人工智能
以下内容基于对OpenAI最新发布的AgentAPI及相关工具的官方信息、技术演示和已有报道进行综合解读与深度分析,供您参考。本报告将围绕最新发布的ResponsesAPI(智能体核心新接口)、内置工具(websearch、filesearch、computeruse)、全新的AgentsSDK以及核心安全与可观测性机制,帮助您深入理解其原理、特性及应用价值。一、背景:为什么要推出新的AgentA
- 【AI】Transformer布道:让AI学会“左顾右盼”的超级大脑!(扫盲帖)
碣石潇湘无限路
人工智能transformer深度学习
在LLM爆火的时代,如果还不了解Transformer就太落伍了,下面我第一次尝试用一种更日常、更口语化的方式,把Transformer这个模型讲个大概。你可以想象我们是从“什么是注意力”开始,一步步搭积木,直到把整个Transformer这台“机器”组装起来,然后再看看它能干什么、怎么训练、为什么厉害。主要目的就是帮助更多的非AI专业的人群入门和了解实现AGI的底层架构。1.为什么要有Trans
- 【奇点时刻】通义千问开源QwQ-32B技术洞察报告(扫盲帖)
碣石潇湘无限路
开源人工智能
以下报告将基于今天各大社区对Qwen/QwQ-32B(下文简称「QwQ-32B」)模型的讨论、测评与实测体验进行综合性分析与洞察。本报告将从模型背景与定位、核心技术、性能表现与对比、部署与使用方式,以及未来潜力与可能的影响五个维度,帮助读者更好地了解这一新兴且备受瞩目的开源推理模型。一、模型背景与定位1.发布方与家族概览QwQ-32B模型由阿里巴巴(Alibaba)旗下的Qwen团队推出,属于Qw
- #PyCharm 2024.1新增功能
Dingdangr
pycharmidepython
PyCharm2024.1作为JetBrains专为Python开发者设计的集成开发环境(IDE)的最新版本,带来了众多令人兴奋的新增功能,旨在提升开发者的编程效率和体验。以下是对这些新增功能的详细解析:一、智能编码辅助HuggingFace模型和数据集文档预览PyCharm2024.1引入了HuggingFace模型和数据集的快速文档预览功能。开发者可以直接在PyCharm内部快速获取Huggi
- TensorRT-LLM保姆级教程-快速入门
大模型八哥
笔记agiai大模型ai大模型LLMTransformer
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github,有需要的朋友自
- 使用Python爬取豆瓣用户信息:从入门到实战
Python爬虫项目
2025年爬虫实战项目python开发语言人工智能爬虫大数据
引言豆瓣作为一个知名的社交平台,拥有丰富的用户信息。对于数据分析师、研究人员或普通用户来说,获取豆瓣用户信息具有重要的价值。本文将详细介绍如何使用Python及其相关库来爬取豆瓣用户信息,并展示如何利用最新的技术手段来实现这一目标。1.准备工作在开始编写爬虫之前,我们需要准备一些工具和环境:Python3.x:确保你已经安装了Python3.x版本。Requests库:用于发送HTTP请求。Bea
- 深入 Python 网络爬虫开发:从入门到实战
南玖yy
pythonpython爬虫
一、为什么需要爬虫?在数据驱动的时代,网络爬虫是获取公开数据的重要工具。它可以帮助我们:监控电商价格变化抓取学术文献构建数据分析样本自动化信息收集二、基础环境搭建1.核心库安装pipinstallrequestsbeautifulsoup4lxmlseleniumscrapy2.开发工具推荐PyCharm(专业版)VSCode+Python扩展JupyterNotebook(适合调试)三、爬虫开发
- Vue2 中使用 UniApp 时,生命周期钩子函数总结
上趣工作室
vue2.xuniapp前端
在Vue2中使用UniApp时,生命周期钩子函数是一个重要的概念。它允许开发者在特定的时间点运行代码,管理组件的生命周期。以下是Vue2中UniApp常用的生命周期钩子函数总结:1.beforeCreate说明:组件实例刚被创建,此时数据观测和事件配置尚未开始。用途:很少直接使用,通常用于初始化一些状态,但在此时无法访问data、computed或methods。2.created4.mounte
- JavaScript 内置对象-Math对象
咖啡の猫
javascript开发语言
在JavaScript编程中,处理各种数学运算和数值操作是不可避免的任务。幸运的是,JavaScript提供了一个非常有用的内置对象——Math对象,它包含了大量用于执行常见数学任务的方法和属性。本文将详细介绍Math对象的主要特性和使用方法,帮助你更高效地进行数学相关的编程工作。一、什么是Math对象?Math是一个内置的对象,提供了对数学常量和函数的访问。与其它全局对象不同,Math不是一个构
- 使用agent搭建一个简易的ai论文写作程序
喂喂喂喂位
langChain手搓AIAgent记录人工智能langchain深度学习pythonAIGC
本程序能够自动化完成从规划、研究、撰写到修改的整个论文创作流程。基于LangGraph和LangChain框架构建,利用大型语言模型和搜索工具协同工作,形成了一个完整的论文写作流水线。核心功能分析计划生成功能(plan_node)这个node将接收状态,然后创建一个消息列表。其中一个将是PLAN_PROMPT,那将是SystemMessage。然后创建HumanMessage,传入我们要做的tas
- JavaScript基础-变量的作用域
難釋懷
javascript开发语言
在学习JavaScript的过程中,理解变量的作用域是至关重要的。作用域决定了变量的可见性和生命周期,即在程序的哪些部分可以访问这些变量。正确理解和应用变量作用域不仅能帮助编写更清晰、更高效的代码,还能避免一些常见的编程错误。本文将详细介绍JavaScript中的变量作用域概念、类型及其应用场景。一、什么是作用域?作用域(Scope)是指变量的有效范围,在这个范围内,变量是可以被访问和使用的。Ja
- 从零开始探索C++游戏开发:性能、控制与无限可能
南玖yy
C++游戏开发c
一、为何选择C++开发游戏?在虚幻引擎5渲染的次世代画面背后,在《巫师3》的庞大开放世界中,在《毁灭战士》的丝滑60帧战斗里,C++始终扮演着核心技术角色。这门诞生于1983年的语言,至今仍占据着游戏引擎开发语言使用率榜首(根据2023年GameDev调查数据)。其核心竞争力体现在:硬件级控制:手动内存管理允许精确控制资源分配,这对需要管理数百万多边形和4K纹理的3A游戏至关重要零成本抽象:模板元
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号