- Farm3D- Learning Articulated 3D Animals by Distilling 2D Diffusion论文笔记
Im Bug
3d论文阅读
Farm3D:LearningArticulated3DAnimalsbyDistilling2DDiffusion1.Introduction最近的研究DreamFusion表明,可以通过text-imagegenerator提取高质量的三维模型,尽管该生成模型并未经过三维训练,但它仍然包含足够的信息以恢复三维形状。在本文中,展示了通过文本-图像生成模型可以获取更多信息,并获得关节模型化的三维对
- 硅基流动免费模型API调用
2401_82750289
语言模型
推荐一个网站https://cloud.siliconflow.cn/i/wLHLnn22硅基流动,新用户送14块钱的付费额度,还有一系列可以免费调用的模型
- DeepSeek R1 简单指南:架构、训练、本地部署和硬件要求
爱喝白开水a
人工智能AI大模型DeepSeekR1DeepSeek算法人工智能训练大模型部署
DeepSeek推出的LLM推理新策略DeepSeek最近发表的论文DeepSeek-R1中介绍了一种创新的方法,通过强化学习(RL)提升大型语言模型(LLM)的推理能力。这项研究在如何仅依靠强化学习而不是过分依赖监督式微调的情况下,增强LLM解决复杂问题的能力上,取得了重要进展。DeepSeek-R1技术概述模型架构DeepSeek-R1不是一个单独的模型,而是包括DeepSeek-R1-Zer
- RabbitMQ系列(零)概要
yyueshen
RabbitMQrabbitmq分布式消息队列
一、消息队列总览1.什么是消息队列?消息队列(MessageQueue)是一种异步通信机制,允许分布式系统中的服务通过生产-消费模型传递数据。其核心价值在于:解耦性:生产者与消费者无需同时在线或直接交互削峰填谷:应对流量突发场景,避免系统过载(如秒杀系统请求缓冲)可靠性:通过持久化、重试机制保障消息不丢失2.典型应用场景场景实现原理案例服务异步化耗时操作异步执行(如日志记录)用户注册后异步发送通知
- Day5 --- Flask-RESTful请求响应与SQLAlchemy基础
laufing
问题flaskrestfulpython
文章目录昨日回顾今日内容1.请求解析1.1RequestParser处理请求1.2参数详解1.3处理请求案例2.返回响应2.1序列化数据:2.2返回JSON格式3.ORM与Flask-SQLAlchemy3.1ORM介绍ORM框架3.2Flask-SQLAlchemy扩展3.3定义模型类3.4数据库迁移操作4.数据增删改查4.1新增数据4.2简单查询4.3更新数据4.4删除数据5.数据操作案例昨日
- 用Python写一个商城系统
潮水岩
如果要用Python写一个商城系统,可以先定义需要实现的功能,再按照功能模块分别进行开发。下面是一个简单的开发流程:数据模型设计:需要定义商品、订单、用户等数据模型,并且将它们存储在数据库中。用户模块:用户可以注册、登录、查看个人信息、修改密码等。商品模块:商家可以发布商品、管理商品信息、查看商品列表等;用户可以查看商品详情、加入购物车等。订单模块:用户可以下单、查看订单详情、取消订单、评价订单等
- Empowering LLMs with Logical Reasoning: 从“语言大师”到“逻辑大师”的进化之路
步子哥
人工智能
“逻辑是智慧的骨架,而语言是智慧的血肉。让大语言模型(LLMs)既能说会道,又能逻辑严谨,是AI发展的下一座高峰。”开篇:语言模型的“逻辑盲区”近年来,大语言模型(LLMs)在自然语言处理(NLP)任务中取得了令人瞩目的成就。从生成流畅的文章到翻译复杂的句子,这些模型似乎无所不能。然而,当我们试图让它们回答逻辑推理问题时,却发现它们的表现常常令人失望。比如,某顶尖LLM在回答以下问题时出现了自相矛
- python画出roc曲线 auc计算逻辑_Python画ROC曲线和AUC值计算
路过炊烟
python画出roc曲线auc计算逻辑
前言ROC(ReceiverOperatingCharacteristic)曲线和AUC常被用来评价一个二值分类器(binaryclassifier)的优劣。这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC。AUC介绍AUC(AreaUnderCurve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,
- JavaScript BOM(浏览器对象模型)与 `setTimeout` 函数:控制浏览器行为的利器
人才程序员
杂谈javascript开发语言ecmascriptfirefoxhtml5jquerysafari
文章目录JavaScriptBOM(浏览器对象模型)与`setTimeout`函数:控制浏览器行为的利器⏳什么是BOM?`setTimeout`函数:实现延时操作⏳基本语法:示例:基本使用`setTimeout`返回值:定时器ID示例:取消定时器`setTimeout`的实际应用`setTimeout`的注意事项⚠️小结:BOM与`setTimeout`的妙用JavaScriptBOM(浏览器对象
- 【Python-ML】SKlearn库性能指标ROC-AUC
fjssharpsword
Bigdatapython专栏
#-*-coding:utf-8-*-'''Createdon2018年1月19日@author:Jason.F@summary:ROC(receiveroperatorcharacteristic,基于模型真正率和假正率等性能指标评估分类模型'''importpandasaspdfromsklearn.preprocessingimportLabelEncoderfromsklearn.cros
- Java内存与缓存
C6666888
java专栏java开发语言
Java内存管理和缓存机制是构建高性能应用程序的关键要素。它们之间既有联系又有区别,理解这两者对于优化Java应用至关重要。Java内存模型Java内存模型(JMM)定义了线程如何以及何时可以看到其他线程修改过的共享变量的值,并且规定了所有线程在读取或写入共享变量时必须遵循的一些规则。根据JVM规范,Java运行时数据区可以分为以下几个部分:程序计数器:每个线程都有自己的程序计数器,它记录当前线程
- 【python 机器学习】sklearn ROC曲线与AUC指标
人才程序员
杂谈机器学习pythonsklearn人工智能深度学习神经网络目标检测
文章目录sklearnROC曲线与AUC指标1.什么是ROC曲线与AUC?通俗介绍:学术解释:2.在`sklearn`中绘制ROC曲线与计算AUC2.1导入库和数据2.2加载数据集2.3训练模型2.4预测概率2.5计算FPR、TPR和AUC2.6绘制ROC曲线3.解析ROC曲线和AUC值4.总结sklearnROC曲线与AUC指标在机器学习中,评估分类模型的性能不仅仅依赖于准确率,还需要使用一些更
- python操作kafka
您懂我意思吧
python开发kafka分布式python
一、参考阿里云的官方链接:使用PythonSDK接入Kafka收发消息_云消息队列Kafka版(Kafka)-阿里云帮助中心二、安装python环境三、添加python依赖库pipinstallconfluent-kafka==1.9.2四、新建一个setting.py文件配置信息kafka_setting={'sasl_plain_username':'XXX',#如果是默认接入点实例,请删除该
- 月之暗面改进并开源了 Muon 优化算法,对行业有哪些影响?
互联网之路.
知识点开源算法
互联网各领域资料分享专区(不定期更新):Sheet正文月之暗面团队改进并开源的Muon优化算法在深度学习和大模型训练领域引发了广泛关注,其核心创新在于显著降低算力需求(相比AdamW减少48%的FLOPs)并提升训练效率,同时通过开源推动技术生态的共建。1.显著降低大模型训练成本,推动技术普惠算力需求锐减:Muon通过引入权重衰减和一致的RMS更新,解决了原始Muon在大规模训练中的稳定性问题,使
- 非关系型数据库和关系型数据库的区别
纠结哥_Shrek
数据库nosql
非关系型数据库(NoSQL)和关系型数据库(SQL)的主要区别体现在以下几个方面:数据模型:关系型数据库(SQL):数据以表格形式存储,数据行和列组成,每个表都有固定的模式(Schema)。常见的关系型数据库有MySQL、PostgreSQL、Oracle等。非关系型数据库(NoSQL):数据没有固定的模式,存储方式更加灵活。可以是键值对、文档、列族、图等形式。常见的非关系型数据库有MongoDB
- 深度解析:大模型开源的真与假
rs勿忘初心
#AI大模型大模型开源闭源对比开源闭源区别
目录大模型企业开闭源策略各异开源大模型的定义与现状开源内容的局限性通常开放的内容实际未开放的关键内容法律与商业模式的约束开源许可证的重要性大模型的定制许可证及其限制性条款商业公司对开源大模型的策略和目的建立生态系统吸引开发者提升品牌形象保持竞争优势技术创新和改进技术与协助开发的挑战训练和推理过程的资源需求差异微调和衍生模型的技术实现及其局限性开源大模型在协作开发中的局限总结大模型的发展开启了AIG
- HDMI规范-第十六章 HDR(高动态范围)技术规范详解及运用场景
好多渔鱼好多
HDMI人工智能计算机视觉音视频电视视频编解码智能电视
引言随着显示技术的不断发展,用户对图像质量和视觉体验的要求越来越高。传统的SDR(StandardDynamicRange,标准动态范围)技术已经无法满足现代显示设备的需求。为此,HDR(HighDynamicRange,高动态范围)技术应运而生。HDR通过提供更广泛的亮度范围和更丰富的色彩深度,显著提升了图像的质量和视觉效果。本文将全面介绍HDR技术的规范,包括其工作原理、数据传输流程、标准和格
- Python标准库之asyncio
june_francis
python库python
asyncio是Python3.4版本引入的标准库,直接内置了对异步IO的支持。asyncio的编程模型就是一个消息循环。我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO。用asyncio实现Helloworld代码如下:
[email protected]():print(
- 使用Python或R语言重新拟合模型
pk_xz123456
python算法pythonr语言开发语言
以下分别给出使用Python和R语言完成该任务的示例代码,假设我们有一个包含被试编号、实验条件和反应时的数据,并且要拟合一个线性回归模型。Python实现importpandasaspdimportnumpyasnpimportstatsmodels.apiassm#生成示例数据data={'subject':np.repeat(range(1,11),5),'condition':np.tile
- OpenCV开源机器视觉软件
视觉人机器视觉
杂说opencv开源人工智能
OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,广泛应用于实时图像处理、视频分析、物体检测、人脸识别等领域。它由英特尔实验室于1999年发起,现已成为计算机视觉领域最流行的工具之一,支持多种编程语言(如C++、Python、Java)和操作系统(Windows、Linux、macOS、Android、iOS)。核心功能图像处理基
- DeepSeek开源周第二弹:DeepEP如何用RDMA+FP8让MoE模型飞起来?
曦紫沐
大模型deepseek
一、引言:MoE模型的通信瓶颈与DeepEP的诞生在混合专家(MoE)模型训练中,专家间的全对全(All-to-All)通信成为性能瓶颈。传统方案在跨节点传输时带宽利用率不足50%,延迟高达300μs以上。DeepSeek推出的DeepEP作为首个开源EP通信库,通过软硬件协同优化,将节点内通信带宽压榨至158GB/s(接近NVLink极限),跨节点RDMA延迟降至46GB/s,成为大模型训练/推
- 《AI 大模型 ChatGPT 的传奇》
武昌库里写JAVA
面试题汇总与解析课程设计springbootvue.js算法数据结构
《AI大模型ChatGPT的传奇》——段方某世界100强企业大数据/AI总设计师教授北京大学博士后助理:1三6三二四61四五41AI大模型的概念和特点1.1什么是”大模型、多模态“?1.2大模型带来了什么?1.3大模型为什么能产生质变?1.4算法层面的跃升1.4.1RNN到transformor1.4.2扩散模型diffusion1.4.3跨模态的CLIP框架1.5AIGC的耀眼成果1.5.1AI
- 利用DSPy优化LangChain RAG系统的实战指南
scaFHIO
langchainpython
利用DSPy优化LangChainRAG系统的实战指南技术背景介绍DSPy是一个用于大语言模型(LLMs)的出色框架,它引入了一个自动编译器,能够教会模型如何执行你程序中的声明性步骤。具体来说,DSPy编译器会在内部追踪你的程序,然后为大型语言模型(LLMs)创建高质量的提示(或为小型LLMs训练自动微调),以教会它们任务的步骤。感谢OmarKhattab的努力,现在DSPy可以与LangChai
- 硅基流动api
Zswdhy
python
官方文档内提供的API未列出ststem和user两个角色,且未提供事例文本fromopenaiimportOpenAIdefmodel_siliconflow(s_content,u_content):token="sk-xxxxxxxxxxxxxxxxxxxxxxxx"deepseek_mode="deepseek-ai/DeepSeek-V2.5"#硅基流动内的模型client=OpenAI
- 大模型RAG优化之高可用向量数据库的“热更”难题与解决方案
kakaZhui
大模型应用案例之RAG打造专属知识库botAIGCchatgpt人工智能llama数据库
在现代应用中,向量数据库被广泛用于图像搜索、推荐系统、语义搜索等场景。但与传统数据库不同,向量数据库的“热更”(即在不中断服务的情况下更新索引)是一个具有挑战性的问题。本文将深入探讨这一问题,对比主流向量数据库的热更方案,并给出Qdrant的代码示例。1.什么是向量数据库的“热更”?想象一下,你正在运营一个大型电商平台,用户可以上传图片搜索相似商品。你的商品库每天都在更新:新商品上架:需要将新商品
- GPT-4提示词冠军如何写 prompt:CO-STAR 框架、文本分段、系统提示
天涯倦客的美丽人生
prompt数据库
CO-STAR框架CO-STAR框架用来构建提示词(prompt),分隔符对提示词进行文本分段。©上下文:为任务提供背景信息通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。(O)目标:明确你要求大语言模型完成的任务清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。(S)风格:明确你期望的写作风格你可以指定一个特定的
- 使用LangChain与GPT4All模型进行交互
bavDHAUO
langchain交互python
技术背景介绍近年来,开源模型和框架在AI技术领域迅猛发展。GPT4All是一个开源的对话机器人生态系统,旨在为用户提供干净的助手数据,包括代码、故事和对话。这篇文章将介绍如何使用LangChain与GPT4All模型进行交互,以实现智能问答功能。核心原理解析GPT4All是基于大型语言模型(LLMs)的开源项目,通过训练大量干净的数据,能够生成高质量的对话和回答。LangChain是一种用于简化与
- 使用 Weaviate 执行 RAG (Retriever-Augmented Generation)
bavDHAUO
python
RAG(Retriever-AugmentedGeneration)是当前AI领域中频繁使用的技术,结合了信息检索与生成模型,可以大幅提升信息获取与生成内容的准确性和丰富度。本文将通过Weaviate数据库和OpenAI模型结合,展示如何实现在实际项目中的应用。技术背景介绍RAG技术结合了检索式模型(例如Weaviate)和生成式模型(例如OpenAI的GPT-3),能够在大量数据中快速找到相关信
- 解密AI创作:提升Prompt提示词的提问技巧
chiikawa&q
人工智能prompt
文章目录AI创作的核心:提示词Prompt的重要性1.什么是提示词工程?1.1提示词的工作原理1.2高薪提示词工程师的现实1.3谁能胜任提示词工程师?2.提示词编写技巧3.常见的提示词框架3.1CO-STAR框架3.2BORKE框架4.提示词的实际应用5.提示词资源网站6.AIGC领域的发展与应用7.生成式AI实验示例AI创作的核心:提示词Prompt的重要性在深入探索AI内容创作时,提示词成为与
- 前言:什么是大模型微调
伯牙碎琴
大模型微调深度学习人工智能机器学习大模型微调训练
一、大模型微调的基础知识1.什么是大模型微调?大模型微调(Fine-tuning)是指在预训练模型的基础上,针对特定的任务或数据集进行进一步训练的过程。预训练模型通常在大规模的通用数据上训练,具备广泛的语言理解和生成能力。通过微调,我们可以让模型更好地适应特定的领域或任务,例如情感分析、问答系统、文本生成等。2.为什么需要微调?适应特定任务:通用模型虽然功能强大,但在特定任务上可能表现不够精准。微
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">