方差与标准差

标准差定义是总体各单位标准值( xi)与其平均数(μ)离差平方和的算术平均数的平方根。它反映组内个体间的离散程度。

所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根:

标准差公式

一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

与方差相比,使用标准差来表示数据点的离散程度有3个好处:

表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为6.4;两者相比较,标准差更适合人理解。

表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。

在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:66.7%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。

一个标准差 68%, 两个标准差 95%, 三个标准差 99%

你可能感兴趣的:(方差与标准差)