- 流媒体娱乐服务平台在AWS上使用Presto作为大数据的交互式查询引擎的具体流程和代码
weixin_30777913
aws大数据python音视频
一家流媒体娱乐服务平台拥有庞大的用户群体和海量的数据。为了高效处理和分析这些数据,它选择了Presto作为其在AWSEMR上的大数据查询引擎。在AWSEMR上使用Presto取得了显著的成果和收获。这些成果不仅提升了数据查询效率,降低了运维成本,还促进了业务的创新与发展。实施过程:Presto集群部署:在AWSEMR上部署了Presto集群,该集群与HiveMetastore和AmazonS3集成
- R语言绘图实现—使用R语言绘制科研图形
kaka_R-Py
r语言开发语言
###6.1常用图形参数####6.1.1颜色#对women数据集绘制散点图,并用红色表示散点。plot(women,col="red")#通过颜色名称plot(women,col=554)#通过颜色下标plot(women,col="#FF0000")#通过十六进制的颜色值mycolor=1)){points(x,y,pch=i,col="blue",bg="yellow",cex=2)}els
- Vue和Vue-Element-Admin(十):HTML和CSS快速学习笔记
A叶子叶
#Vue与Web开发vue.jshtmlcss
目录html标签分类网页布局盒子模型浮动定位css标签选择flex布局transform转换Vue开发tipsless和scssVScode常用插件后端语言框架很多,Java适合企业级应用(规范且稳定),Go适合高并发场景(比如云上产品),Python框架(bottle,tornado,django)简单且快速,也天然适合数据分析场景,PHP适合快速建站,前端变化小,所见即所得,因此抽空记录下学习
- 算法基础——一致性
黄雪超
大数据基础#算法基础大数据算法一致性
引入最早研究一致性的场景既不是大数据领域,也不是分布式系统,而是多路处理器。可以将多路处理器理解为单机计算机系统内部的分布式场景,它有多个执行单元,每一个执行单元都有自己的存储(缓存),一个执行单元修改了自己存储中的一个数据后,这个数据在其他执行单元里面的副本就面临数据一致的问题。随着时代发展,互联网公司的快速发展,单机系统在计算和存储方面都开始面临瓶颈,分布式是一个必然的选择,但是这也进一步放大
- 大数据(一)MaxCompute
胖当当技术
架构云计算odps学习大数据
一、引言作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路二、介绍MaxCompute(原名ODPS-OpenDataProcessingService)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。下面是MaxCompute的一些主要功能和应用场景:大规模数
- python 图像特征提取_python实现LBP方法提取图像纹理特征实现分类的步骤
weixin_39969060
python图像特征提取
题目描述这篇博文是数字图像处理的大作业.题目描述:给定40张不同风格的纹理图片,大小为512*512,要求将每张图片分为大小相同的9块,利用其中的5块作为训练集,剩余的4块作为测试集,构建适当的模型实现图片的分类.图片如下图所示:分析:由于数据集太小,所以神经网络模型并不适合此类的图像处理.就需要寻找方法提取图像的纹理信息.本文采用LBP的方法提取图像的纹理信息,然后转化成直方图作为图像的特征,然
- 打架检测系统:基于YOLOv5的实时人群打架行为识别
2025年数学建模美赛
YOLO深度学习ui计算机视觉视觉检测
1.引言打架检测,作为一个复杂且具有挑战性的任务,已经在多个领域展现出其巨大的应用潜力,尤其是在公共安全监控、安防摄像头、智能城市等应用场景中。通过深度学习技术,尤其是基于YOLOv5的目标检测,我们能够对实时视频流中的人群行为进行实时监控,并有效地检测和识别人群中的打架行为。本博客将详细介绍如何使用YOLOv5模型搭建一个打架检测系统,包含数据集准备、YOLOv5训练、UI界面设计以及优化和部署
- 猫眼大数据开发面试题及参考答案
大模型大数据攻城狮
数据仓库大数据数据开发窗口函数hive外部表维度建模数仓分层
Java基本数据类型有哪些?包装类型又是什么?Java的基本数据类型是Java语言中最基础的数据类型,它们用于存储简单的值。Java的基本数据类型主要分为以下几类:整型byte:占1个字节,取值范围是-128到127,通常用于节省内存的场景,比如处理文件或网络数据时,存储一些小的整数值。short:占2个字节,取值范围是-32768到32767,使用场景相对较少,但在某些需要节省内存且数值范围不大
- 基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色关键词:智能家居,Java,大数据处理,机器学习,物联网1.背景介绍1.1问题由来随着物联网技术的发展,智能家居已经从一个概念转变为现实。通过连接各种家庭设备,智能家居系统能够实现自动化控制、远程监控、个性化服务等功能。然而,这些功能背后隐藏着一个庞大的数据处理和管理系统,即大数据处理系统。这些系统需要高效、可靠的计算平台,而Ja
- 4、PyTorch 第一个神经网络,手写神经网络的基本部分组成
找个栗子
PyTorch开始到scipytorch神经网络人工智能
假设有一个二维数据集,目标是根据点的位置将它们分类到两个类别中(例如,红色和蓝色点)。以下实例展示了如何使用神经网络完成简单的二分类任务,为更复杂的任务奠定了基础,通过PyTorch的模块化接口,神经网络的构建、训练和可视化都非常直观。1、数据准备首先,生成一些二维数据:importtorchimporttorch.nnasnnimporttorch.optimasoptimimportmatpl
- [利用Python加载和处理网址内容:从Unstructured到Selenium和Playwright]
bhawfgrcbtwny
pythonselenium开发语言
引言在现代网页数据分析中,加载和处理来自多种网址的内容是一个常见需求。无论是数据挖掘还是网页内容分析,我们常常需要从多个网页中提取HTML文档。本篇文章将介绍如何利用Python中的Unstructured、Selenium和Playwright库来加载这些网页内容,并将其转换为适合后续处理的文档格式。主要内容UnstructuredURLLoaderUnstructuredURLLoader可以
- 大数据相关职位介绍之二(数据治理,数据库管理员, 数据资产管理师,数据质量专员)
小Tomkk
大数据大数据数据治理数据库管理员数据资产管理师数据质量专员
大数据相关职位介绍之二(数据治理,数据库管理员,数据资产管理师,数据质量专员)文章目录大数据相关职位介绍之二(数据治理,数据库管理员,数据资产管理师,数据质量专员)数据治理工程师/专家(DataGovernanceEngineer/Expert)1.元数据管理师(MetadataManager)2.主数据管理师(MasterDataManager)数据库管理员(DBA-DatabaseAdmini
- 使用朴素贝叶斯对自定义数据集进行分类
Luzem0319
人工智能机器学习
准备自定义数据集首先,需要一个自定义数据集来进行分类。创建一个简单的二维数据集,其中每个样本有两个特征,并且属于两个类别之一。importnumpyasnpimportpandasaspd#创建自定义数据集np.random.seed(42)num_samples=100#生成特征数据X=np.random.rand(num_samples,2)#生成标签数据(0或1)y=np.where(X[:
- Highcharts 条形图:数据可视化的利器
lly202406
开发语言
Highcharts条形图:数据可视化的利器引言在数据分析和可视化领域,Highcharts是一个广受欢迎的JavaScript图表库。它以其易用性、灵活性和丰富的图表类型而著称。其中,条形图作为一种基础但功能强大的图表类型,被广泛应用于各种场景,以直观地展示数据分布和比较。本文将深入探讨Highcharts中的条形图,包括其基本用法、高级配置以及在实际应用中的最佳实践。什么是Highcharts
- Python 安装 Geopandas (亲测有效)
顾润治
Python安装Geopandas(亲测有效)Python安装Geopandas亲测有效项目地址:https://gitcode.com/Resource-Bundle-Collection/8a355简介本资源文件提供了在Python环境中安装Geopandas库的详细步骤和相关依赖库的下载链接。Geopandas是一个用于处理地理空间数据的Python库,广泛应用于GIS数据分析和处理。安装步
- Oracle 分区在什么情况下使用?思维导图 代码示例(java 架构)
用心去追梦
oraclejava架构
Oracle分区的适用场景Oracle分区(Partitioning)是一种强大的数据管理工具,适用于特定类型的数据库工作负载和数据结构。以下是一些适合使用分区的情况:1.大型表优化超大数据量:当表包含数百万甚至数十亿行时,分区可以帮助提高查询性能。频繁更新:对于经常被插入、更新或删除的数据,分区可以减少锁定范围,提高并发性。2.数据仓库历史数据分析:在数据仓库中,通常会存储多年的历史数据。通过按
- Highcharts 柱形图:深入解析与最佳实践
lsx202406
开发语言
Highcharts柱形图:深入解析与最佳实践引言Highcharts是一个功能强大的图表库,它允许用户轻松地在网页上创建各种类型的图表。其中,柱形图因其直观的展示方式,在数据分析、业务报告等领域得到了广泛应用。本文将深入解析Highcharts柱形图,包括其基本用法、高级特性以及最佳实践。高charts柱形图的基本用法1.初始化图表首先,需要在HTML文件中引入Highcharts库。以下是一个
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- hive分区和分桶详解
CodeShelby
hive大数据hive
1、分区表分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过WHERE子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多。1)分区表基本操作(1)引入分区表(需要根据日期对日志进行管理,通过部门信息模拟)dept_20200401.logdept_2020
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- Hive分区和分桶
码农小旋风
后端
Hive分区和分桶两种用于优化查询性能的数据组织策略,数仓设计的关键概念,可提升Hive在读取大量数据时的性能。1分区(Partitioning)根据表的某列的值来组织数据。每个分区对应一个特定值,并映射到HDFS的不同目录。为大幅减少数据量,基本必须要做!常用于经常查询的列,如日期、区域等。这样可以在查询时仅扫描相关的分区,而不是整个数据集,从而减少查询所需要处理的数据量,提高查询效率。物理上将
- 【爬虫】JS逆向解决蝉妈妈加密参数data
秋无之地
爬虫JS逆向python爬虫js逆向
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关目录一、先打开目标网站,打开F12调试模式二、通过刷新页面定位接口,并找到接口上的加密参数data三、打开启动器(Initiator)
- Go+ 下个里程碑:超越 cgo,无缝对接 C 语言
xushiweizh
编译器编程语言python人工智能java
去年(2021年)Go+的slogan从“面向数据科学”的语言升级到了“面向工程、STEM教育与数据科学”三位一体的语言。也就是说,我们希望Go+可以同时被软件工程师、中小学生、数据分析师这三个截然不同的人群所广泛使用。对Go+来说,“面向数据科学”这个目标注定有非常长远的路要走。所以去年Go+的版本迭代主要精力都花在了“低门槛”上。我们努力让Go+的使用门槛低到和Python相当的水平。这是从G
- Windows下Go语言环境搭建和使用
go语言学习基地
GO语言学习golangwindows开发语言
简介go语言是一种开源的、语法精简的静态编程语言,它的开源社区比较庞大,应用场景非常广范。可以用于系统监控、容器技术(Docker)、大数据、存储技术、分布式系统(HyperledgerFabric)、消息系统(Kafka客户端)、服务器管理、安全工具、Web工具等。这里介绍在Linux上安装并配置go。下载go安装包到GoLang中国:https://golang.google.cn/dl/下载
- 多租户架构未提供统一的安全策略和框架,导致安全策略不一致
图幻未来
网络安全
多租户架构下的网络安全分析与AI技术应用在云计算和大数据技术的快速发展背景下,多租户架构已成为企业应用的首选。多租户架构允许多个独立的应用共享同一套基础架构和资源池,从而降低了企业的运营成本。然而,多租户架构在给企业带来便利的同时,也面临着一系列安全挑战。本文将围绕多租户架构未提供统一的安全策略和框架导致安全策略不一致的问题展开分析,并探讨AI技术在网络安全领域的应用场景。一、多租户架构下的安全挑
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
〖是♂我〗
scikit-learn均值算法聚类
代码:#导入必要的库importmatplotlib.pyplotasplt#用于绘制图形fromsklearn.clusterimportKMeans#KMeans聚类算法importnumpyasnp#数值计算库#定义class1到class4的数据点,模拟四个不同的类(每个类7个二维点)class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5]
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
〖是♂我〗
python开发语言
代码:importnumpyasnp#导入用于数值计算的库importmatplotlib.pyplotasplt#导入用于绘图的库#class1_points和class2_points分别定义了两个类别的数据点,二维坐标class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4
- Megatron:深度学习中的高性能模型架构
gs80140
基础知识科谱AI机器学习人工智能
Megatron:深度学习中的高性能模型架构Megatron是由NVIDIA推出的深度学习大规模预训练模型框架,主要针对大规模Transformer架构模型的高效训练与推理。Megatron大多用于GPT(生成式预训练模型)、BERT等Transformer模型的预训练,擅长在大规模数据集和高性能计算资源上进行训练。Megatron的主要特点1.超大模型的高效训练模型并行(ModelParalle
- kylin套_Apache Kylin(一)Kylin介绍
weixin_39898011
kylin套
1.传统大数据分析的问题在基于Hadoop生态的传统大数据分析中,主要使用的技术是MPP(MassivelyParallelProcessing)大规模并行处理和列式存储。MPP使用线性增加计算资源换取计算时间的线性下降,列式存储可以提高读取数据的速率。两者结合可以使得基于Hadoop的SQL查询速度从小时级降为分钟级。不过分钟级别的查询响应仍未达到交互式分析级别,主要问题在于:MPP以及列式存储
- 可视化大屏
梦屿千寻!!
信息可视化
可视化大屏是一种利用计算机图形学技术,将复杂的数据和信息转换为直观的可视化图形,以呈现数据信息的工具。它不仅在电影中常见,而且已经实实在在地被应用在商业、金融、制造等各个行业的业务场景中,成为大数据分析和展示的重要工具。一、可视化大屏的特点直观性:通过图形、图表、地图等可视化元素,将复杂的数据直观展示出来,便于用户快速理解。实时性:支持实时更新数据,使用户能够随时掌握最新情况。高效性:一次性处理大
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号