Kullback-Leibler Divergence (KL 散度)

转载自:https://blog.csdn.net/matrix_space/article/details/80550561

今天,我们介绍机器学习里非常常用的一个概念,KL 散度,这是一个用来衡量两个概率分布的相似性的一个度量指标。我们知道,现实世界里的任何观察都可以看成表示成信息和数据,一般来说,我们无法获取数据的总体,我们只能拿到数据的部分样本,根据数据的部分样本,我们会对数据的整体做一个近似的估计,而数据整体本身有一个真实的分布(我们可能永远无法知道),那么近似估计的概率分布和数据整体真实的概率分布的相似度,或者说差异程度,可以用 KL 散度来表示。

KL 散度,最早是从信息论里演化而来的,所以在介绍 KL 散度之前,我们要先介绍一下信息熵。信息熵的定义如下:

H=−∑i=1Np(xi)log⁡p(xi)” role=”presentation” style=”text-align: center; position: relative;”>H=i=1Np(xi)logp(xi)H=−∑i=1Np(xi)log⁡p(xi)

p(xi)” role=”presentation” style=”position: relative;”>p(xi)p(xi) 发生的概率,信息熵其实反映的就是要表示一个概率分布需要的平均信息量。

在信息熵的基础上,我们定义 KL 散度为:

DKL(p||q)=∑i=1Np(xi)⋅(log⁡p(xi)−log⁡(q(xi))” role=”presentation” style=”text-align: center; position: relative;”>DKL(p||q)=i=1Np(xi)(logp(xi)log(q(xi))DKL(p||q)=∑i=1Np(xi)⋅(log⁡p(xi)−log⁡(q(xi))

或者表示成下面这种形式:

DKL(p||q)=∑i=1Np(xi)⋅log⁡p(xi)q(xi)” role=”presentation” style=”text-align: center; position: relative;”>DKL(p||q)=i=1Np(xi)logp(xi)q(xi)DKL(p||q)=∑i=1Np(xi)⋅log⁡p(xi)q(xi)

DKL(p||q)” role=”presentation” style=”position: relative;”>DKL(p||q)DKL(p||q) 之间越接近,那么估计的概率分布于真实的概率分布也就越接近。

KL 散度可以帮助我们选择最优的参数,比如 p(x)” role=”presentation” style=”position: relative;”>p(x)p(x) 个样本,构建如下的目标函数:

DKL(p||q)=∑i=1N{log⁡p(xi)−log⁡q(xi|θ)}” role=”presentation” style=”text-align: center; position: relative;”>DKL(p||q)=i=1N{logp(xi)logq(xi|θ)}DKL(p||q)=∑i=1N{log⁡p(xi)−log⁡q(xi|θ)}

因为我们要预估的是参数 θ” role=”presentation” style=”position: relative;”>θθ,而这个就是我们熟悉的最大似然估计。

你可能感兴趣的:(矩阵相关知识)