flashcache中内存与磁盘,磁盘与磁盘的io

flashcache中跟磁盘相关的读写分为以下两类:
1)磁盘跟内存的交互
2)磁盘跟磁盘之前的交互
比如说读不命中时就是直接从磁盘读,属于第1种情况,那读命中呢?也是属于第1种情况,不过这时候是从SSD读。磁盘跟磁盘之间交互是用于写脏数据,将SSD中脏cache块拷贝到磁盘上去。现在介绍下两种情况使用的接口函数,这样后面在看读写流程时看到这两个函数就十分亲切了,并且清楚地知道数据是从哪里流向哪里。
 
对于情况1,主要是两个函数dm_io_async_bvec和flashcache_dm_io_async_vm。
 
int dm_io_async_bvec(unsigned int num_regions, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)

                struct dm_io_region *where, #else

                struct io_region *where, #endif

                int rw, struct bio_vec *bvec, io_notify_fn fn, void *context) { struct dm_io_request iorq; iorq.bi_rw = rw; iorq.mem.type = DM_IO_BVEC; iorq.mem.ptr.bvec = bvec; iorq.notify.fn = fn; iorq.notify.context = context; iorq.client = flashcache_io_client; return dm_io(&iorq, num_regions, where, NULL); } #endif

 

int flashcache_dm_io_async_vm(struct cache_c *dmc, unsigned int num_regions, #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26)

              struct io_region *where, #else

              struct dm_io_region *where, #endif

              int rw, void *data, io_notify_fn fn, void *context) { unsigned long error_bits = 0; int error; struct dm_io_request io_req = { .bi_rw = rw, .mem.type = DM_IO_VMA, .mem.ptr.vma = data, .mem.offset = 0, .notify.fn = fn, .notify.context = context, .client = flashcache_io_client, }; error = dm_io(&io_req, 1, where, &error_bits); if (error) return error; if (error_bits) return error_bits; return 0; } #endif

上面两个函数都使用struct dm_io_request 来包装了请求,其中的只有两种请求的类型是不一样的,第一个函数对应的是DM_IO_BVEC,第二个函数是DM_IO_VMA。

其实我开始一直不明白,为什么要使用这两个函数让硬盘与内存打交道,不过后来看了dm_io发现其中的io服务类型有多种不同类型,这两个函数的调用分别对应不同的io类型。下面先看一下dm_io相关的数据结构。

 dm_io

dm-io为device mapper提供同步或者异步的io服务。

使用dm-io必须设置dm_io_region结构(2.6.26版本以前叫io_region),该结构定义了io操作的区域,读一般针对一个dm_io_region区,而写可以针对一组dm_io_region区。

struct dm_io_region { struct block_device *bdev; sector_t sector; sector_t count; /* If this is zero the region is ignored. */ };
 
老版本的内核,用户必须设置一个io_region结构来描述预期的I/O所在地。每个io_region说明了一个在区域上的有起始位置和长度的块设备。
 
struct io_region { struct block_device *bdev; sector_t sector; sector_t count; };
 
Dm-io 可以从一个io_region中读取或者写入到一个或者多个io_region中去。一个io_region结构数组指定了写入到多个区域。

dm-io一共有四种dm_io_mem_type类型(老一点的内核版本只有前面三种,Flashcache主要使用DM_IO_BVEC):

enum dm_io_mem_type { DM_IO_PAGE_LIST,/* Page list */ DM_IO_BVEC, /* Bio vector */ DM_IO_VMA, /* Virtual memory area */ DM_IO_KMEM, /* Kernel memory */ }; struct dm_io_memory { enum dm_io_mem_type type; union { struct page_list *pl; struct bio_vec *bvec; void *vma; void *addr; } ptr; unsigned offset; };
Dm-io 提供同步和异步I/O服务。老一点的内核它提供了3种I/O服务,每种服务都有一个同步和一个异步的版本。
 
DM_IO_PAGE_LIST
第一个I/O服务类型使用了一串内存页作为缓冲区,伴随着一个首页面的偏移。
 

   struct page_list { struct page_list *next; struct page *page; }; int dm_io_sync(unsigned int num_regions, struct io_region *where, int rw, struct page_list *pl, unsigned int offset, unsigned long *error_bits); int dm_io_async(unsigned int num_regions, struct io_region *where, int rw, struct page_list *pl, unsigned int offset, io_notify_fn fn, void *context);

 

DM_IO_BVEC
第二种I/O服务类型把一组bio载体当着I/O的数据缓冲。如果调用者提前拼装了bio,这个服务可以很顺利地完成。但是需要将不同的bio页指向不同的设备。
 

   int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where, int rw, struct bio_vec *bvec, unsigned long *error_bits); int dm_io_async_bvec(unsigned int num_regions, struct io_region *where, int rw, struct bio_vec *bvec, io_notify_fn fn, void *context); 
DM_IO_VMA
 
第三种I/O服务类型把一个指向虚拟动态内存缓冲区的的指针当作I/O的数据缓冲。如果调用者需要在很大的块设备上进行I/O操作又不想分配大量的个人内存页,那么这种服务可以胜任。
 
 int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw, void *data, unsigned long *error_bits); int dm_io_async_vm(unsigned int num_regions, struct io_region *where, int rw, void *data, io_notify_fn fn, void *context);
 
异步I/O服务的调用者必须包含一个完成的回调函数和一个指向一些这个I/O内容数据的指针。
 
typedef void (*io_notify_fn)(unsigned long error, void *context);
 
这个"error"参数,就像这个"*error"参数在任何同步版本中一样,在这个回调函数中就象一个位集合(而不是一个简单的错误值)。

在写I/O到多个目标区域的情况下,这个位集合允许dm-io说明在每个单独的区域上的成功或者失败。
在使用任何dm-io服务之前,用户必须调用dm_io_get()、同时指定他们想要的页数来执行I/O.
DM-io将尝试着更改自己的内存池的大小来确认在执行i/o时为了避免不必要的等待而有足够的页面来供给。
当用户完成了使用I/O服务,他们将调用dm_io_put(),并指定和给dm_io_get()的相同数量的页面。
 

dm-io通过dm_io_request结构来封装请求的类型,如果设置了dm_io_notify.fn则是异步IO,否则是同步IO。

struct dm_io_request { int bi_rw;                      /* READ|WRITE - not READA */

    struct dm_io_memory mem;        /* Memory to use for io */

    struct dm_io_notify notify;     /* Synchronous if notify.fn is NULL */

    struct dm_io_client *client;    /* Client memory handler */ };

使用dm_io服务前前需要通过dm_io_client_create函数(在2.6.22版本前是dm_io_get)先创建dm_io_client结构,为dm-io的执行过程中分配内存池。使用dm-io服务完毕后,则需要调用dm_io_client_destroy函数(在2.6.22版本前是dm_io_put)释放内存池。

struct dm_io_client { mempool_t *pool; struct bio_set *bios; };

 

dm-io函数执行具体的io请求。

int dm_io(struct dm_io_request *io_req, unsigned num_regions, struct dm_io_region *where, unsigned long *sync_error_bits) { int r; struct dpages dp; r = dp_init(io_req, &dp); if (r) return r; if (!io_req->notify.fn) return sync_io(io_req->client, num_regions, where, io_req->bi_rw, &dp, sync_error_bits); return async_io(io_req->client, num_regions, where, io_req->bi_rw, &dp, io_req->notify.fn, io_req->notify.context); }

对于第二种情况,磁盘跟磁盘之前的交互。这种情况只用于将ssd中脏块写入disk中。

int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from, unsigned int num_dests, struct dm_io_region *dests, unsigned int flags, dm_kcopyd_notify_fn fn, void *context)

第一个参数dm_kcopyd_client,在使用kcopyd异步拷贝服务时,必须先创建一个对应的client,首先要分配“kcopyd客户端”结构,调用函数如下:

kcopyd_client_create(FLASHCACHE_COPY_PAGES, &flashcache_kcp_client);

创建dm_kcopyd_client结构。

第二个参数dm_io_region是源地址,第四个参数是目的地址,定义如下
struct dm_io_region {
     struct block_device *bdev;
     sector_t sector;
     sector_t count;          /* If this is zero the region is ignored. */
};
dm_kcopyd_notify_fn fn是kcopyd处理完请求的回调函数
context 是回调函数参数,在flashcache都设置对应的kcached_job。

你可能感兴趣的:(Flash)