- ORB-SLAM2:四、 地图点、关键帧、图结构】
KeyPan
ORB-SLAM2计算机视觉人工智能机器学习深度学习算法
地图点、关键帧和图结构是ORB-SLAM系统的核心组成部分,它们共同构建了SLAM系统的空间表示与数据组织方式。本章将详细讨论这些模块及其在系统中的作用和实现方式。4.1地图点4.1.1什么是地图点地图点(MapPoint)是SLAM系统中用来表示环境中三维特征点的抽象概念。这些点是通过相机观测和三角测量得到的,是地图构建的基础。三维位置每个地图点存储其在世界坐标系中的三维坐标P(X,Y,Z)P(
- 【视觉SLAM:六、视觉里程计Ⅰ:特征点法】
KeyPan
视觉SLAM计算机视觉人工智能机器学习数码相机算法深度学习
视觉里程计(VisualOdometry,VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。特征点法特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,
- 通俗易懂 serverless 架构、微服务架构和云原生架构,并简单代码
Ai君臣
架构架构云原生serverless
文章目录1serverless架构、微服务架构和云原生架构区别1.Serverless架构示例:AWSLambda+APIGateway2.微服务架构示例:Flask微服务3.云原生架构示例:Docker和Kubernetes2Kubernetes中管理多个副本和流量两个关键组件1.Deployment2.Service负载均衡流量管理1serverless架构、微服务架构和云原生架构区别别用代码
- 【视觉惯性SLAM:十五、ORB-SLAM3中的IMU预积分】
KeyPan
视觉惯性SLAM计算机视觉视觉检测
15.1视觉惯性紧耦合15.1.1视觉惯性紧耦合的重要性视觉惯性紧耦合(Visual-InertialTightCoupling)在ORB-SLAM3中的作用不可替代,是实现高鲁棒性和高精度定位的核心技术。单一的视觉SLAM主要依赖于图像特征进行定位和建图,这种方法虽然能够在许多环境中获得良好的效果,但其鲁棒性容易受到动态变化、光照条件恶化以及环境特征稀缺等因素的限制。例如,昏暗场景或快速运动可能
- VSLAM技术实现机器人在不同场景下的精准导航、避障
向阳而生|X
自主导航python计算机视觉
链接:https://developer.orbbec.com.cn/forum_plate_module_details.html?id=998
- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- 从零开始搭二维激光SLAM --- 序章
李太白lx
从零开始搭二维激光SLAMSLAM
为什么要做这个开源项目1我的SLAM接触史1.1硕士阶段从17年3月开始接触SLAM,到现在已经3年了。虽然时间很长,但并不是所有时间都在单纯的搞SLAM。17年3月,研一下学期的时候选的课题题目,基于SLAM的室内移动机器人导航技术研究。之前并没有接触过SLAM,ROS等等。就连c++都是16年研一上学期的时候学的(大一学过以后没再接触过)。从17年3月开始学ROS,开始了解SLAM,还看了概率
- 导致格式错误的 Lambda 代理响应的原因以及如何修复它
zqhdz米时空
汇编
当人们尝试使用AWSAPIGateway和AWSLambda构建无服务器应用程序时,经常出现的一个问题是_由于配置错误而执行失败:Lambda代理响应格式错误。_没有什么比通用错误消息更糟糕的了,它们不会告诉您解决问题所需的任何内容,对吧?AWS并不是以其错误消息设计而闻名,如果甚至可以这样称呼它的话,更不用说为您提供解决问题的方法了。那么如何修复这个Lambda错误以及是什么原因造成的呢?花椒壳
- ROS yaml参数文件的使用
Sun Shiteng
ROS
举个例子,若在params.yaml文件中定义如下参数LidarImageFusion:points_src:"/hilbert_h/deskew/cloud_info"image_src:"/usb_cam0/image_raw"camera_info_src:"/home/hdj/fusion_slam/Color_SLAM_ws/src/hilbert_h/config/firefly_8s
- xwiki html和css,MediaWiki vs. XWiki
Ake阿科
多语言信息技术编程数据库操作系统
140Afar,Abkhazian,Afrikaans,Amharic,Arabic,Assamese,Aymara,Azerbaijani,Bashkir,Byelorussian,Bulgarian,Bihari,Bislama,Bengali;Bangla,Tibetan,Breton,Catalan,Corsican,Czech,Welsh,Danish,German,Bhutani,Gr
- 2021-07-07
潇洒二爷
一辆特斯拉“花格子S型”小车,突然起火,电子技术的车门也失灵TeslaModelSPlaidbrokeintofirewithfailureofelctronicdoors一辆“花格子牌”(ModelSPlaid)特斯拉轿车,在6月29日这天,车主正在路上行驶,突然烈焰腾飞,他的代理律师说,他被短时间困在车内,因为几个电动门都打不开。事情在几天前发生于费城外,这名男子拿到这款特斯拉之后,号称是世界
- 力扣刷题记录(一)剑指Offer(第二版)
乘凉~
求职过程记录leetcode链表算法
1、本栏用来记录社招找工作过程中的内容,包括基础知识学习以及面试问题的记录等,以便于后续个人回顾学习;暂时只有2023年3月份,第一次社招找工作的过程;2、个人经历:研究生期间课题是SLAM在无人机上的应用,有接触SLAM、Linux、ROS、C/C++、DJIOSDK等;3、参加工作后(2021-2023年)岗位是嵌入式软件开发,主要是服务器开发,Linux、C/C++、网络编程、docker容
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- 《Java基础知识》Java Lambda表达式
Limingmingaa
javajava开发语言蓝桥杯
接触Lambda表达式的时候,第一感觉就是,这个是啥?我居然看不懂,于是开始寻找资料,必须弄懂它。先来看一个案例:@FunctionalInterfacepublicinterfaceMyLamda{voidtest1(Stringy);}importdemo.knowledgepoints.Lambda.inf.MyLamda;publicclassLambdaTest{publicsta
- NDT算法
Joeybee
SLAM算法
上一次我们学习了高翔《自动驾驶与机器人中的SLAM技术》中的三维ICP算法,其中包括点对点、点对线、点对面的ICP算法,本次博客学习NDT算法的源码。NDT算法与ICP算法的最大不同之处,在我看来是NDT考虑了均值和方差这两个局部统计量。从最后的求解方法来看,NDT采用了加权最小二乘问题的高斯-牛顿法,和ICP算法的最明显区别是多了权重分布。从高翔书中的测试结果来看,NDT的收敛速度稍弱于点对面I
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 【XR】优化SLAM SDK的稳定性
大江东去浪淘尽千古风流人物
xr
优化SLAMSDK的稳定性是确保增强现实(AR)和虚拟现实(VR)应用在各种环境和设备上都能稳定运行的关键。以下是一些主要的优化方法:1.传感器融合优化方法:将多个传感器的数据(如摄像头、加速度计、陀螺仪、磁力计)进行融合,以补偿单一传感器可能存在的误差。优势:提高了环境理解的准确性,减少了由于单一传感器误差导致的抖动和漂移现象。实例:ARKit和ARCore都利用了传感器融合技术来增强稳定性。2
- ROS2导航SLAM建图探索
鱼香ROS
ROS2机器人SLAMROS2导航SLAM
大家好,我是昨晚熬夜太多脑壳痛的小鱼。今天带大家一起探索一些ROS2+turtlebot3的slam建图。先上最终效果图1.安装ROS2第一步就是要有一个ROS2的环境,这个没有的请打开小鱼的fishros网站,选择一行代码安装ROS2进行安装。2.安装turtlebot3sudoaptinstallros-foxy-turtlebot3*sudoaptinstallros-foxy-cartog
- 数百倍加速!港科大最新:嵌入式平台上实时运行的NeRF SLAM!
计算机视觉工坊
3D视觉从入门到精通学习自动驾驶算法
来源:计算机视觉工坊添加微信:dddvision,备注:NeRF,拉你入群。文末附行业细分群0.笔者个人体会传统的NeRF和NeRFSLAM所需要的计算量非常大,很难在嵌入式设备上跑起来,这也就很大程度上限制了NeRFSLAM的落地。但最近港科大&中山大学提出了一项工作Photo-SLAM,不仅实现了高保真的建图,还可以在嵌入式设备上实时运行,甚至渲染速度提高了数百倍。下面一起来阅读一下这项工作,
- 自动驾驶-机器人-slam-定位面经和面试知识系列07之C++STL面试题(03)
lonely-stone
面试c++职场和发展
这个博客系列会分为C++STL-面经、常考公式推导和SLAM面经面试题等三个系列进行更新,基本涵盖了自己秋招历程被问过的面试内容(除了实习和学校项目相关的具体细节)。在知乎和牛客也会同步更新,全网同号(lonely-stone或者lonely_stone)。关于高频面试题和C++STL面经,每次我会更新10个问题左右,每次更新过多,害怕大家可能看了就只记住其中几个点。(在个人秋招面试过程中,面试到
- 激光SLAM--(8) LeGO-LOAM论文笔记
lonely-stone
slam激光SLAM论文阅读
论文标题:LeGO-LOAM:LightweightandGround-OptimizedLidarOdometryandMappingonVariableTerrain应用在可变地形场景的轻量级的、并利用地面优化的LOAMABSTRACT轻量级的、基于地面优化的LOAM实时进行六自由度位姿估计,应用在地面的车辆上。强调应用在地面车辆上是因为在这里面要求雷达必须水平安装,而像LOAM和LIO-SA
- 自动驾驶-机器人-slam-定位面经和面试知识系列03之C++STL面试题(01)
lonely-stone
面试c++职场和发展
这两天有点忙耽搁了,抱歉!!!这个博客系列会分为C++STL-面经、常考公式推导和SLAM面经面试题等三个系列进行更新,基本涵盖了自己秋招历程被问过的面试内容(除了实习和学校项目相关的具体细节)。在知乎和牛客也会同步更新,全网同号(lonely-stone或者lonely_stone)。关于高频面试题和C++STL面经,每次我会更新10个问题左右,每次更新过多,害怕大家可能看了就只记住其中几个点。
- 自动驾驶-机器人-slam-定位面经和面试知识系列04之高频面试题(02)
lonely-stone
自动驾驶机器人面试
这个博客系列会分为C++STL-面经、常考公式推导和SLAM面经面试题等三个系列进行更新,基本涵盖了自己秋招历程被问过的面试内容(除了实习和学校项目相关的具体细节)。在知乎和牛客也会同步更新,全网同号(lonely-stone或者lonely_stone)。关于高频面试题和C++STL面经,每次我会更新10个问题左右,每次更新过多,害怕大家可能看了就只记住其中几个点。(在个人秋招面试过程中,面试到
- 【自动驾驶】自动驾驶地图构建方法与工具小结
CS_Zero
自动驾驶人工智能
自动驾驶地图构建小结概述制作流程主要利用定位与建图算法(组合导航,视觉、激光SLAM等),融合多种传感器数据,构建高精度、高分辨率的三维语义地图,将要素矢量化,构建要素间的关联关系,通过质检确保质量可靠,形成地图引擎(服务、API)以满足自动驾驶系统的需求。底图构建底图构建存在两大类方法,点云建图与视觉建图。点云建图一般面向高精度采集设备,采用高线束激光雷达,硬件成本高。一般使用高精度组合导航进行
- Android D8 编译器 和 R8 工具,【一篇文章搞懂】
安卓开发top
Androidandroidjavaeclipse移动开发
android.enableIncrementalDesugaring=false.android.enableDesugar=false2.1Lambda表达式Java8中一个重大变更是引入Lambda表达式。publicclassLambda{publicstaticvoidmain(String[]args){logDebug(msg->System.out.println(msg),"He
- 特斯拉神器TeslaMate一键安装,终于来了
oakley0
cartesla云服务器腾讯云
之前分享了teslamate的功能和简单安装方法,很多喜欢尝鲜的车友尝试了,但安装过程对不熟悉linux服务器的非码农来说还是有点小艰辛。趁这回双十一腾讯云重磅优惠,我也重新屯了服务器重装了一遍,现在把简化后安装过程、一键安装方法包括加密登录的方式分享一下。目录1.购买服务器2.登录服务器3.安装TeslaMate3.1切换管理员用户3.2一键安装TeslaMate-【简单模式】3.3一键安装Te
- 特斯拉神器TeslaMate一键安装,来了
oakley04
腾讯云阿里云云计算
之前分享了teslamate的功能和简单安装方法,很多喜欢尝鲜的车友尝试了,但安装过程对不熟悉linux服务器的非码农来说还是有点小艰辛。趁这回双十一腾讯云重磅优惠,我也重新屯了服务器重装了一遍,现在把简化后安装过程或一键安装方法分享一下。1.购买服务器以下三款服务器都可以,其中最推荐中间的2核4G8M带宽的三年198,还没入手请点击下面的入口链接:腾讯云运营活动-腾讯云https://curl.
- TeslaMate特斯拉神器本地Docker部署实现无公网远程访问
nagiY
てんさいdocker容器运维sql
文章目录1.Docker部署TeslaMate2.本地访问TeslaMate3.Linux安装Cpolar4.配置TeslaMate公网地址5.远程访问TeslaMate6.固定TeslaMate公网地址7.固定地址访问TeslaMateTeslaMate是一个开源软件,可以通过连接特斯拉账号,记录行驶历史,统计能耗、里程、充电次数等数据。用户可以通过web界面查看车辆状态、行程报告、充电记录等信
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc