LeetCode | C++ 动态规划——139.单词拆分、多重背包

目录

  • 139.单词拆分
  • 多重背包
  • 参考

139.单词拆分

139题目链接
dp[i] :

字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。

递推公式:

如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

dp数组初始化

dp[0] = true ,dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了, 根据题意,字符串s 非空, dp[0] = true, 完全是为了推导公式。

下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

遍历顺序:

有序的单词 才能拼凑成 字符串,本题 需要物品是有序的,所以求的是排列数,先背包,再物品

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> dp(s.size() + 1, false);
        dp[0] = true;

        for (int i = 1; i < dp.size(); i++) {
            for (int j = 0; j < i; j++) {
                string word = s.substr(j, i - j);
                if (wordSet.find(word) != wordSet.end() && dp[j] == true) {
                    dp[i] = true;
                }
            }
        }
        return dp[s.size()];

    }
};

多重背包

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

代码

void test_multi_pack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    vector<int> nums = {2, 3, 2};
    int bagWeight = 10;
    for (int i = 0; i < nums.size(); i++) {
        while (nums[i] > 1) { // nums[i]保留到1,把其他物品都展开
            weight.push_back(weight[i]);
            value.push_back(value[i]);
            nums[i]--;
        }
    }

    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
        for (int j = 0; j <= bagWeight; j++) {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;

}
int main() {
    test_multi_pack();
}

另一种实现方式,就是把每种商品遍历的个数放在01背包里面在遍历一遍。

void test_multi_pack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    vector<int> nums = {2, 3, 2};
    int bagWeight = 10;
    vector<int> dp(bagWeight + 1, 0);


    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
        // 打印一下dp数组
        for (int j = 0; j <= bagWeight; j++) {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    test_multi_pack();
}

参考

代码随想录

你可能感兴趣的:(#,C++,leetcode,c++,动态规划)