作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。
定理1:如果有 lim x → x 0 f ( x ) = A \lim_{x \rightarrow x_{0}}f(x)=A limx→x0f(x)=A, lim x → x 0 g ( x ) = B \lim_{x \rightarrow x_{0}}g(x)=B limx→x0g(x)=B, 则有:
(1) lim x → x 0 [ f ( x ) ± g ( x ) ] \lim_{x \rightarrow x_{0}}[f(x)\pm g(x)] limx→x0[f(x)±g(x)] 存在,且 lim x → x 0 [ f ( x ) ± g ( x ) ] = \lim_{x \rightarrow x_{0}}[f(x)\pm g(x)]= limx→x0[f(x)±g(x)]= lim x → x 0 f ( x ) ± \lim_{x \rightarrow x_{0}}f(x)\pm limx→x0f(x)± lim x → x 0 g ( x ) \lim_{x \rightarrow x_{0}}g(x) limx→x0g(x) = A ± B A\pm B A±B;
(2) lim x → x 0 [ f ( x ) ⋅ g ( x ) ] \lim_{x \rightarrow x_{0}}[f(x)\cdot g(x)] limx→x0[f(x)⋅g(x)] 存在,且 lim x → x 0 [ f ( x ) ⋅ g ( x ) ] = \lim_{x \rightarrow x_{0}}[f(x)\cdot g(x)]= limx→x0[f(x)⋅g(x)]= lim x → x 0 f ( x ) ⋅ \lim_{x \rightarrow x_{0}}f(x)\cdot limx→x0f(x)⋅ lim x → x 0 g ( x ) \lim_{x \rightarrow x_{0}}g(x) limx→x0g(x) = A B AB AB;
(3) lim x → x 0 f ( x ) g ( x ) \lim_{x \rightarrow x_{0}}\frac{f(x)}{g(x)} limx→x0g(x)f(x) 存在,若 lim x → x 0 g ( x ) = B ≠ 0 \lim_{x \rightarrow x_{0}} g(x)=B\neq 0 limx→x0g(x)=B=0, 则 lim x → x 0 f ( x ) g ( x ) = lim x → x 0 f ( x ) lim x → x 0 g ( x ) = A B \lim_{x \rightarrow x_{0}}\frac{f(x)}{g(x)}=\frac{\lim_{x \rightarrow x_{0}}f(x)}{\lim_{x \rightarrow x_{0}}g(x)}=\frac{A}{B} limx→x0g(x)f(x)=limx→x0g(x)limx→x0f(x)=BA .
注:
使用四则运算法则的前提是各部分极限必须存在.
推论1: lim x → x 0 [ c ⋅ f ( x ) ] = c ⋅ lim x → x 0 f ( x ) \lim_{x \rightarrow x_{0}}[c\cdot f(x)]=c\cdot\lim_{x \rightarrow x_{0}}f(x) limx→x0[c⋅f(x)]=c⋅limx→x0f(x) ( c c c 为常数).
推论2: lim x → x 0 [ f ( x ) ] n = [ lim x → x 0 f ( x ) ] n \lim_{x \rightarrow x_{0}}[ f(x)]^{n}=[\lim_{x \rightarrow x_{0}}f(x)]^{n} limx→x0[f(x)]n=[limx→x0f(x)]n ( n n n 为正整数).
定理2: 设有数列 { x n } \{x_{n}\} {xn} 和 { y n } \{y_{n}\} {yn} , 如果 lim n → ∞ x n = A \lim_{n \rightarrow \infty}x_{n}=A limn→∞xn=A, lim n → ∞ y n = B \lim_{n \rightarrow \infty}y_{n}=B limn→∞yn=B, 则有:
(1) lim n → ∞ ( x n ± y n ) = A ± B \lim_{n \rightarrow \infty}(x_{n}\pm y_{n})=A\pm B limn→∞(xn±yn)=A±B;
(2) lim n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim_{n \rightarrow \infty}(x_{n}\cdot y_{n})=A\cdot B limn→∞(xn⋅yn)=A⋅B;
(3)当 y n ≠ 0 ( n = 1 , 2 , . . . ) y_{n}\neq0(n=1,2,...) yn=0(n=1,2,...) 且 B ≠ 0 B\neq0 B=0 时, lim n → ∞ x n y n = A B \lim_{n \rightarrow \infty}\frac{x_{n} }{y_{n}}=\Large\frac{A}{B} limn→∞ynxn=BA.
例1:设 n n n 次多项式 P n ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n P_{n}(x)=a_{0}+a_{1}x+a_{2}x^{2}+...+a_{n}x^{n} Pn(x)=a0+a1x+a2x2+...+anxn, 其中 a 0 , a 1 , a 2 , . . . , a n a_{0},a_{1}, a_{2},...,a_{n} a0,a1,a2,...,an 为多项式系数,试证: lim x → x 0 P n ( x ) = P n ( x 0 ) \lim_{x \rightarrow x_{0}}P_{n}(x)=P_{n}(x_{0}) limx→x0Pn(x)=Pn(x0).
证: lim x → x 0 P n ( x ) = lim x → x 0 ( a 0 + a 1 x + a 2 x 2 + . . . + a n x n ) \lim_{x \rightarrow x_{0}}P_{n}(x)=\lim_{x \rightarrow x_{0}} (a_{0}+a_{1}x+a_{2}x^{2}+...+a_{n}x^{n}) limx→x0Pn(x)=limx→x0(a0+a1x+a2x2+...+anxn)
= lim x → x 0 a 0 + lim x → x 0 a 1 x + lim x → x 0 a 2 x 2 + . . . + lim x → x 0 a n x n ~~~~~~~~~~~~~~=\lim_{x \rightarrow x_{0}}a_{0}+\lim_{x \rightarrow x_{0}}a_{1}x+\lim_{x \rightarrow x_{0}}a_{2}x^{2}+...+\lim_{x \rightarrow x_{0}}a_{n}x^{n} =limx→x0a0+limx→x0a1x+limx→x0a2x2+...+limx→x0anxn
= lim x → x 0 a 0 + a 1 lim x → x 0 x + a 2 ( lim x → x 0 x ) 2 + . . . + a n ( lim x → x 0 x ) n ~~~~~~~~~~~~~~=\lim_{x \rightarrow x_{0}}a_{0}+a_{1}\lim_{x \rightarrow x_{0}}x+a_{2}(\lim_{x \rightarrow x_{0}}x)^{2}+...+a_{n}(\lim_{x \rightarrow x_{0}}x)^{n} =limx→x0a0+a1limx→x0x+a2(limx→x0x)2+...+an(limx→x0x)n
= a 0 + a 1 x 0 + a 2 x 0 2 + . . . + a n x 0 n = P n ( x 0 ) ~~~~~~~~~~~~~~= a_{0}+a_{1}x_{0}+a_{2}x_{0}^{2}+...+a_{n}x_{0}^{n}=P_{n}(x_{0}) =a0+a1x0+a2x02+...+anx0n=Pn(x0).
例2:设 有理分式函数 R ( x ) = P ( x ) Q ( x ) R(x)=\frac{P(x)}{Q(x)} R(x)=Q(x)P(x), 其中 P ( x ) P(x) P(x) 和 Q ( x ) Q(x) Q(x) 都是多项式,且 Q ( x 0 ) ≠ 0 Q(x_{0})\neq0 Q(x0)=0 , 试证: lim x → x 0 R ( x ) = R ( x 0 ) \lim_{x \rightarrow x_{0}}R(x)=R(x_{0}) limx→x0R(x)=R(x0).
证:因为 P ( x ) P(x) P(x) 和 Q ( x ) Q(x) Q(x) 都是多项式,由例1结论可知
lim x → x 0 P ( x ) = P ( x 0 ) , lim x → x 0 Q ( x ) = Q ( x 0 ) , \begin{align} \lim_{x \rightarrow x_{0}}P(x)=P(x_{0}),\lim_{x \rightarrow x_{0}}Q(x)=Q(x_{0}),\nonumber \end{align} x→x0limP(x)=P(x0),x→x0limQ(x)=Q(x0),
又因为 Q ( x 0 ) ≠ 0 Q(x_{0})\neq 0 Q(x0)=0, 由函数极限的四则运算法则可得
lim x → x 0 R ( x ) = lim x → x 0 P ( x ) Q ( x ) = lim x → x 0 P ( x ) lim x → x 0 Q ( x ) = P ( x 0 ) Q ( x 0 ) = R ( x 0 ) . \begin{align} \lim_{x \rightarrow x_{0}}R(x)=\lim_{x \rightarrow x_{0}}\frac{P(x)}{Q(x)}=\frac{\lim_{x \rightarrow x_{0}}P(x)}{\lim_{x \rightarrow x_{0}}Q(x)}=\frac{P(x_{0})}{Q(x_{0})}=R(x_{0}).\nonumber \end{align} x→x0limR(x)=x→x0limQ(x)P(x)=limx→x0Q(x)limx→x0P(x)=Q(x0)P(x0)=R(x0).
注:
由例1和例2可得一个结论:在求多项式函数或有理分式函数当 x → x 0 x \rightarrow x_{0} x→x0 时的极限时,可直接将 x 0 x_{0} x0 替代函数中的 x x x 即可得到极限值;对于有理分式函数,前提是用 x 0 x_{0} x0 替代分母中的 x x x 后分母不能为零,如果分母为零,则不能分子、分母分别取极限,而需要做一些相应处理.
对于有理函数有如下结论:当 x → ∞ x \rightarrow \infty x→∞, 且 a 0 ≠ 0 , b 0 ≠ 0 a_{0}\neq0, b_{0}\neq0 a0=0,b0=0, 以及 m m m 和 n n n 为非负整数时,有 lim x → ∞ a 0 x n + a 1 x n − 1 + . . . + a n b 0 x m + b 1 x m − 1 + . . . + b m { 0 , n < m , a 0 b 0 , n = m , ∞ , n > m . \begin{align} \lim_{x \rightarrow \infty}\frac{a_{0}x^{n}+a_{1}x^{n-1}+...+a_{n}}{b_{0}x^{m}+b_{1}x^{m-1}+...+b_{m}}\left\{ \begin{aligned} 0 , ~~~n
注:
对于满足上式函数类型的极限,可直接利用此结论得出结果.
定理3:设 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) 与函数 u = g ( x ) u=g(x) u=g(x) 与函数 y = f ( u ) y=f(u) y=f(u) 复合而成,若 lim x → x 0 g ( x ) = u 0 \lim_{x \rightarrow x_{0}}g(x)=u_{0} limx→x0g(x)=u0, lim u → u 0 f ( u ) = A \lim_{u \rightarrow u_{0}}f(u)=A limu→u0f(u)=A, 且在 x 0 x_{0} x0 的某去心邻域内有 g ( x ) ≠ u 0 g(x)\neq u_{0} g(x)=u0, 则 lim x → x 0 f [ g ( x ) ] = A \lim_{x \rightarrow x_{0}}f[g(x)]=A limx→x0f[g(x)]=A.