『分割』 分割圆柱

『分割』 分割圆柱_第1张图片 原始点云

 

『分割』 分割圆柱_第2张图片 直通滤波过滤后(z:0~1.5)

 

『分割』 分割圆柱_第3张图片 分割到的平面

 

『分割』 分割圆柱_第4张图片 分割得到的圆柱形

 

代码:

#include 
#include 
#include  // 用于提取指定索引的数据
#include 

#include 
#include 
#include 

#include 
#include 

typedef pcl::PointXYZ PointT;

int main(){
    pcl::PCDReader reader;
    pcl::PassThrough pass;
    pcl::NormalEstimation ne;
    pcl::SACSegmentationFromNormals seg;
    pcl::PCDWriter writer;
    pcl::ExtractIndices extract;
    pcl::ExtractIndices extract_normals;
    pcl::search::KdTree::Ptr tree(new pcl::search::KdTree);


    pcl::PointCloud::Ptr cloud(new pcl::PointCloud);
    pcl::PointCloud::Ptr cloud_filtered(new pcl::PointCloud);
    pcl::PointCloud::Ptr cloud_filtered2(new pcl::PointCloud);

    pcl::PointCloud::Ptr cloud_normals(new pcl::PointCloud);
    pcl::PointCloud::Ptr cloud_normals2(new pcl::PointCloud);

    pcl::ModelCoefficients::Ptr coefficient_plane(new pcl::ModelCoefficients), coefficient_cylinder(new pcl::ModelCoefficients);

    pcl::PointIndices::Ptr inliers_plane(new pcl::PointIndices), inliers_cylinder(new pcl::PointIndices);


    // 读取点云数据
    reader.read("/home/jason/file/pcl-learning/12segmentation分割/2cylinder_segmentation/table_scene_mug_stereo_textured.pcd", *cloud);
    std::cerr << "PointCloud has: " << cloud->points.size() << " data points." << std::endl;

    // 直通滤波
    pass.setInputCloud(cloud);
    pass.setFilterFieldName("z");
    pass.setFilterLimits(0, 1.5);
    pass.filter(*cloud_filtered);
    std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size() << " data points." << std::endl;

    // 过滤后的点云进行法线估计,为后续进行基于法线分割准备数据
    ne.setSearchMethod(tree);
    ne.setInputCloud(cloud_filtered);
    ne.setKSearch(50);
    ne.compute(*cloud_normals);

    // 分割平面模型
    seg.setOptimizeCoefficients(true);
    seg.setModelType(pcl::SACMODEL_PLANE);
    seg.setMethodType(pcl::SAC_RANSAC);
    seg.setNormalDistanceWeight(0.1);
    seg.setMaxIterations(100);
    seg.setDistanceThreshold(0.03);
    seg.setInputCloud(cloud_filtered);
    seg.setInputNormals(cloud_normals);

    // 获取平面模型的系数和处在平面的内点
    seg.segment(*inliers_plane, *coefficient_plane);
    std::cerr << "plane coefficients: " << *coefficient_plane << std::endl;

    // 从点云中抽取分割的处在平面上的点集
    extract.setInputCloud(cloud_filtered);
    extract.setIndices(inliers_plane);
    extract.setNegative(false); // 不提取索引的补集,仅提取与索引匹配的点,即提取属于平面的点


    // 存储分割得到的平面上的点到点云文件
    pcl::PointCloud::Ptr cloud_plane(new pcl::PointCloud);
    extract.filter(*cloud_plane);
//    std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;
//    writer.write("result.pcd", *cloud_plane, false); // 不以二进制写入点云数据,即ASCII编码的文本形式写入点云数据到文件中

//    // Remove the planar inliers, extract the rest
    extract.setNegative(true); // 索引的补集
    extract.filter(*cloud_filtered2); // 提取点云数据

    extract_normals.setNegative(true); // 索引的补集
    extract_normals.setInputCloud(cloud_normals); // 输入法线数据
    extract_normals.setIndices(inliers_plane); // 设置索引
    extract_normals.filter(*cloud_normals2); // 提取法线数据

    // Create the segmentation object for cylinder segmentation and set the parameters
    seg.setOptimizeCoefficients(true);          // 设置对估计模型优化
    seg.setModelType(pcl::SACMODEL_CYLINDER);   // 设置分割模型为圆柱形
    seg.setMethodType(pcl::SAC_RANSAC);         // 参数估计方法
    seg.setNormalDistanceWeight(0.1);           // 设置表面法线权重系数
    seg.setMaxIterations(10000);                // 设置迭代的最大次数
    seg.setDistanceThreshold(0.05);             // 设置内点到模型的距离允许最大值
    seg.setRadiusLimits(0, 0.1);               // 设置估计出的圆柱模型的半径的范围, 这个蛮重要的
    seg.setInputCloud(cloud_filtered2);
    seg.setInputNormals(cloud_normals2);

    // Obtain the cylinder inliers and coefficients
    seg.segment(*inliers_cylinder, *coefficient_cylinder);
    std::cerr << "Cylinder coefficients: " << *coefficient_cylinder << std::endl;

    // write the cylinder inliers to disk
    extract.setInputCloud(cloud_filtered2);
    extract.setIndices(inliers_cylinder);
    extract.setNegative(false);
    pcl::PointCloud::Ptr cloud_cylinder(new pcl::PointCloud);
    extract.filter(*cloud_cylinder);
    if (cloud_cylinder->points.empty())
        std::cerr << "Can't find the cylindercal companent." << std::endl;
    else
    {
        std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->points.size() << " data points." << std::endl;
        writer.write("result2.pcd", *cloud_cylinder, false); //
    }

    // 可视化
    pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("viewer"));



//    pcl::visualization::PointCloudColorHandlerCustom cloud_out_red(cloud_filtered2, 255, 0, 0);
//    viewer->addPointCloud(cloud_filtered2, cloud_out_red, "cloud_out1");

//    pcl::visualization::PointCloudColorHandlerCustom cloud_out_green(cloud_plane, 0, 255, 0);
//    viewer->addPointCloud(cloud_plane, cloud_out_green, "cloud_out2");

    pcl::visualization::PointCloudColorHandlerCustom cloud_out_blue(cloud_cylinder, 0, 255, 0);
    viewer->addPointCloud(cloud_cylinder, cloud_out_blue, "cloud_out3");

    viewer->spin();
    return 0;

}

注意:

这里是先分割平面,然后在点云数据中剔除属于平面的点云,然后才分割圆柱形。

不要觉得分割平面这一步多余,直接分割圆柱形的效果差的一批

参考:

PCL学习笔记(二十五)-- 圆柱体模型分割_pcl 分割圆柱_看到我请叫我学C++的博客-CSDN博客

你可能感兴趣的:(点云,pcl)