- 读论文 Situated Instruction Following
MhZhou0412
人工智能深度学习python
研究背景:在传统的指令跟随范式中,代理独自在一个空房子里行动,导致语言使用既简单又人为“完整”。与此相反,我们提出了情境指令跟随(SIF),该方法拥抱真实世界通信中固有的不完全和模糊性,具有人的物理存在。情境指令的意义通过人类的过去行动和预期未来行为自然展开。在我们的设置中,指令具有以下特征:(1)模糊不清,(2)具有时间演变的意图,(3)可以通过代理的动态行动更精确地解释。SIF中的任务包括两个
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 图神经网络系列论文阅读DAY1:《Predicting Tweet Engagement with Graph Neural Networks》
feifeikon
神经网络论文阅读人工智能
摘要翻译:社交网络是全球范围内分享内容的重要在线渠道之一。在这种背景下,预测一篇帖子在互动方面是否会产生影响,对于推动这些媒体的盈利利用至关重要。在现有研究中,许多方法通过利用帖子的直接特征来解决这一问题,这些特征通常与文本内容以及发布该帖子的用户相关。在本文中,我们认为互动的增加还与另一个关键因素相关,即社交媒体用户发布的帖子之间的语义关联。因此,我们提出了一种基于图神经网络(GraphNeur
- 第72期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.从孤立指令到互动鼓
- 命令模式 - 命令模式的设计思想
w(゚Д゚)w吓洗宝宝了
C++从0到1命令模式c++
引言在软件开发中,设计模式是解决常见问题的经典解决方案。命令模式(CommandPattern)是行为型设计模式之一,它将请求封装为对象,从而使你可以用不同的请求对客户进行参数化,并且支持请求的排队、记录日志以及撤销操作。本文将详细介绍命令模式的设计思想,并通过C++代码示例帮助读者深入理解。命令模式的定义命令模式的核心思想是将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化。命令
- Python3【字符串】:文本操作的瑞士军刀
李智 - 重庆
Python精讲精练-从入门到实战python开发语言经验分享编程实战趣味编程编程技巧
Python3【字符串】:文本操作的瑞士军刀内容简介本系列文章是为Python3学习者精心设计的一套全面、实用的学习指南,旨在帮助读者从基础入门到项目实战,全面提升编程能力。文章结构由5个版块组成,内容层层递进,逻辑清晰。基础速通:n个浓缩提炼的核心知识点,夯实编程基础;经典范例:10个贴近实际的应用场景,深入理解Python3的编程技巧和应用方法;避坑宝典:10个典型错误解析,提供解决方案,帮助
- PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本
我是瓦力
PointNet++改进策略3dtransformer深度学习计算机视觉人工智能神经网络
目录介绍核心思想及其实现引入空间自适应感受野自适应关系卷积(ARConv)网络整体架构设计训练和验证实验与评估如何改进PointNet++引入空间自适应感受野引入自适应关系学习利用自适应聚合器论文题目:OA-CNNs:Omni-AdaptiveSparseCNNsfor3DSemanticSegmentation发布期刊:CVPR2024作者地址:1香港中文大学2香港大学3香港中文大学,深圳4HI
- PointNet++改进策略 :模块改进 | PointCAT, 使用交叉注意力机制来提升3D点云任务中提升模型精度
我是瓦力
PointNet++改进策略3d深度学习人工智能计算机视觉transformer
论文题目:PointCAT:Cross-AttentionTransformerforPointCloud通讯地址:南京理工大学代码地址:https://github.com/xincheng-yang/PointCAT.PointCAT架构:PointCAT提出了一种基于交叉注意力机制的Transformer网络,专门用于点云表示。它通过两个不同的多尺度特征分支,利用交叉注意力机制来交换信息。通
- DiNO (Knowledge Distillation with No Labels)(二)
CL.LIANG
pytorch图像处理深度学习
2021年Facebookresearch团队发布DiNO模型后,于2023年又发布了DiNOv2。本文是对DiNOv2论文的学习总结,更多详细细节可以参考论文原稿。论文的创新点Abstract:Therecentbreakthroughsinnaturallanguageprocessingformodelpretrainingonlargequantitiesofdatahaveopenedt
- 动态规划与一维数组
debug_running_Hu
动态规划算法
动态规划与一维数组的结合主要用于解决那些状态可以由单个变量表示的问题。这通常意味着问题具有某种线性或单调递增的性质。一维数组dp[i]存储的是到达状态i的最优解。状态i的最优解通常依赖于它之前状态(0到i-1)的最优解。让我们通过几个例子来详细讲解:1.斐波那契数列:这是动态规划中最经典的例子之一。斐波那契数列的第n项定义为前两项之和:F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1
- Python3 字典:解锁高效数据存储的钥匙
李智 - 重庆
Python精讲精练-从入门到实战python经验分享编程实战趣味编程编程技巧
Python3字典:解锁高效数据存储的钥匙内容简介本系列文章是为Python3学习者精心设计的一套全面、实用的学习指南,旨在帮助读者从基础入门到项目实战,全面提升编程能力。文章结构由5个版块组成,内容层层递进,逻辑清晰。基础速通:n个浓缩提炼的核心知识点,夯实编程基础;经典范例:10个贴近实际的应用场景,深入理解Python3的编程技巧和应用方法;避坑宝典:10个典型错误解析,提供解决方案,帮助读
- [E题成品文章发布]2025美赛数学建模E题35页成品论文+每小问配套py+matlab代码+完整数据集+高清可视化结果图
2025数学建模资料汇总
2025美赛数学建模E题数学建模matlab开发语言
基于生态模型的有机农业管理策略研究:除草剂移除与物种引入的生态影响分析摘要随着全球农业可持续性需求的增加,减少化学品使用并提高农业生态系统的稳定性成为关键目标。本研究基于农业生态系统中的物种互动模型,探讨了不同农业管理方式对生态系统稳定性、害虫控制和成本效益的影响。完整版获取如下地址:点击加入【2025美国大学生数学建模竞赛】:http://qm.qq.com/cgi-bin/qm/qr?_wv=
- YOLOv10-1.1部分代码阅读笔记-model.py
红色的山茶花
YOLO笔记深度学习
model.pyultralytics\models\yolo\model.py目录model.py1.所需的库和模块2.classYOLO(Model):3.classYOLOWorld(Model):1.所需的库和模块#UltralyticsYOLO,AGPL-3.0licensefrompathlibimportPathfromultralytics.engine.modelimportMo
- SCI论文审稿:假期审稿慢,该如何有效催稿?(附催稿信模板)
迪娜学姐
人工智能论文阅读prompt
我是娜姐@迪娜学姐,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。每年12月-来年1月份,正逢圣诞节、春节,再加上年底各单位总结,国内要写本子,国内外期刊审稿人都会变慢。编辑找审稿人也很头疼:一是要错峰找,圣诞期间最好找国内的,春节期间找国外的;二是不回应的、婉拒的审稿人变多,需要不停更新审稿人列表。作者方面来讲,盯着这审稿状态,几个月不动,等的心焦。但是又不知道该如何催稿合适,生怕一
- python广告点击率预测_常见计算广告点击率预估算法总结
weixin_39850143
python广告点击率预测
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~作者:导语:本文讨论了CTR预估模型,包括工业界使用比较广的比较经典模型和学术界最新的结合DeepLearning的一些工作。前言谈到CTR,都多多少少有些了解,尤其在互联网广告这块,简而言之,就是给某个网络服务使用者推送一个广告,该广告被点击的概率,这个问题难度简单到街边算命随口告诉你今天适不适合娶亲、适不适合搬迁一样,也可以复杂到拿到
- Pytorch实现论文:对GAN的交替优化
LJ1147517021
GAN系列生成对抗网络计算机视觉人工智能pytorch机器学习深度学习
简介这次带来的是ClosingtheGapBetweenTheoryandPracticeDuringAlternatingOptimizationforGANs,Gans交替优化中缩小理论与实践的差距这篇论文的一个核心代码在ACGAN模型上的效果测试,核心是修改了损失函数部分的计算。作者的实验是在StyleGAN上进行的。论文简介论文题目:ClosingtheGapBetweenTheoryan
- 2023第二十届华为杯研究生数学建模竞赛C题思路解析及代码
HeartOfDog
数学建模华为
已更新C题包括成品论文等全部内容———————————————老粉可能知道,我是为爱发电,一般分享完思路偶尔会做对应的建模(一般都是帮助同门师兄妹情况下),杜绝各位被骗,由于个人工作问题,我尽可能在比赛期间更新思路,建议收藏或者关注。注:2023.9.22更新,有许多同学私信我说希望发一些论文模板等资料和进度分享,有时间的话会在里边上传一些资料、回答问题737.388.193,去掉符号,或点击此处
- 软件架构师的秘密武器:23个经典案例助你轻松驾驭复杂系统
码农技术栈
设计模式
设计模式的重要性设计模式,听起来挺高大上的,但其实它就是一些解决常见编程问题的“套路”或“模板”。想象一下你在做饭,有时候你会按照某个固定的步骤来做一道菜,这样既能保证味道好,又省时省力。设计模式在编程中也是这样的作用。设计模式提供了一套经过验证的解决方案,可以在不同的项目中复用,减少重复劳动。通过设计模式,软件可以更容易地适应未来的变化,比如添加新功能或修改现有功能。遵循设计模式的代码通常结构更
- C语言青蛙跳台阶问题
共享家9527
c语言
在算法学习中,青蛙跳台阶问题是一个经典的递归和动态规划入门案例。它通过简单的场景,揭示了复杂的算法思想,非常适合初学者理解递归与动态规划的核心概念。一、问题描述一只青蛙要跳上n级台阶,每次它可以跳1级或者2级台阶。那么,青蛙跳上n级台阶总共有多少种不同的跳法呢?二、解题思路递归思路:-对于第n级台阶,青蛙到达它的方式要么是从第n-1级台阶跳1级上来,要么是从第n-2级台阶跳2级上来。-所以,跳上n
- 2023年数学建模动态规划算法在最短路径问题中的应用:以Floyd算法为例
人工智能_SYBH
算法matlab数据结构动态规划
订阅专栏后9月比赛期间会分享思路及Matlab代码数学建模是将实际问题抽象化为数学问题,并采用数学工具和技巧进行求解的过程。在实际应用中,数学建模是解决问题的一种有效方法。本文将介绍Floyd算法在数学建模中的应用。Floyd算法是解决最短路径问题的一种经典动态规划算法。最短路径问题是指在一个加权有向图中,从一个源节点到其他各节点的最短路径问题。在实际应用中,最短路径问题广泛应用于交通运输、通信网
- 经典卷积网络算法-VGG16
終不似少年遊*
人工智能学习进阶网络算法python人工智能神经网络图像识别
目录前言TensorFlow2.x中的tf.keras.applications使用示例主要参数迁移学习TensorFlow2.x的优势VGG16前置理解:全连接池化层具体作用与1x1池化的区别使用场景示例与1x1池化的对比总结VGG16的原始结构全局平均池化层在VGG16中的应用1.替代全连接层2.优势修改后的VGG16结构示例修改后的模型结构对比原始VGG16和修改后的模型使用场景总结前言ti
- Corki:具身 AI 机器人的软硬件协同设计
硅谷秋水
大模型智能体计算机视觉人工智能机器人机器学习计算机视觉
24年11月来自中科院大学、美团、深圳AI机器人研究院、天津大学和中科院计算所的论文“Software-HardwareCo-DesignForEmbodiedAIRobots”。具身AI机器人有可能从根本上改善人类的生活和生产方式。使用大语言模型控制机器人这一新兴领域的持续进步关键取决于高效的计算基础。特别是,当今具身AI机器人的计算系统纯粹基于算法开发人员的兴趣而设计,其中机器人动作被划分为一
- [Python从零到壹] 七十七.图像识别及经典案例篇之目标检测入门普及和ImageAI对象检测详解
Eastmount
Python从零到壹python目标检测ImageAI图像是被基础系列
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智
- Qwen-VL: 一种多功能的视觉-语言模型,用于理解、定位、文本阅读等
&永恒的星河&
LLMsLVLMsLLMs
论文题目:Qwen-VL:AVersatileVision-LanguageModelforUnderstanding,Localization,TextReading,andBeyond论文地址:https://arxiv.org/pdf/2308.12966github地址:https://github.com/QwenLM/Qwen-VL?tab=readme-ov-file更多技术文章可以
- python爬取百度学术文献搜索引擎_通用爬虫探索(一):适用一般网站的爬虫
吃货组长
这是笔者参加今年的泰迪杯C题的论文简化版。虽然最后只评上了一个安慰奖,但个人感觉里边有些思路对爬虫工作还是有些参加价值的。所以还是放出来供大家参考一下。简介#一个爬虫可以分为两个步骤:1.把网页下载下来;2.从网页中把所需要的信息抽取出来。这两个步骤都存在相应的技术难点。对于第一个步骤,难度在于如何应对各大网站的反爬虫措施,如访问频率过高则封IP或者给出验证码等,这需要根据不同网站的不同反爬虫措施
- 第84期 | GPTSecurity周报
aigc
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.利用数据流路径对大
- shell经典面试题2
酥暮沐
linux服务器
1、需求:判断192.168.8.0/24网络中,当前在线的ip有哪些,并编写脚本打印出来。#实际应该是{1..255},下列为实例:foriin{128..135};doping-c1192.168.8.$i&>/dev/nullif[$?-eq0];thenecho"$iisonline..."elseecho"$iisnotexit..."fidone2、设计一个Shell程序,在/user
- 基于matlab汽车定速巡航仿真,毕业设计论文汽车定速巡航控制系统的设计.doc
weixin_40005437
汽车定速巡航控制系统的设计摘要:随着汽车工业和公路运输业的发展,汽车会越来越普及,人们将需要更加舒适、简便和安全的交通工具。汽车巡航控制系统是一种辅助驾驶系统,它不但可以减轻驾驶员的负担,还可以提高驾车的舒适性。汽车巡航控制系统具有非线性、时变不确定性,并受到外界扰动、复杂的运行工况等影响,采用传统PID控制很难取得满意的效果,本文介绍了一种基于模糊PID控制算法的汽车巡航控制系统。本文首先阐述了
- C++经典面试题(适合收藏)
摇光~
面试c++javajvm面试
当然,以下是一份包含20道C++面试题及其详细解答的列表:1.什么是C++中的构造函数和析构函数?构造函数:在创建对象时自动调用的函数,用于初始化对象。它可以有参数,也可以没有参数。析构函数:在对象生命周期结束时自动调用的函数,用于释放对象所占用的资源。析构函数没有返回值,也不接受任何参数。2.C++中的多态是如何实现的?C++中的多态是通过继承和虚函数来实现的。当基类中的函数被声明为虚函数时,派
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号