Java实现各种常用的排序算法,包括:冒泡排序、插入排序、二分排序、选择排序、希尔排序、堆排序、快速排序(两种写法)、归并排序、基数排序和计数排序(两种写法)。
-
冒泡排序
/** * 冒泡排序(大的值从前往后冒泡) * 优点:稳定排序;适用于数组存储的数据和链表存储的数据; */ public static int[] bubbleSort(int[] a) { for (int end = a.length - 1; end > 0; end--) { boolean flag = false; //增加一个判断是否发生过交换的标记 for (int j = 0; j < end; j++) { if (a[j] > a[j + 1]) { swap(a, j, j + 1); flag = true; } } if (!flag) { //如果扫描一遍发现没有发生交换则说明序列已经有序,退出循环 break; } } return a; } /** * 冒泡排序(小的值从后往前下沉) * 优点:稳定排序;适用于数组存储的数据和链表存储的数据; */ public static int[] bubbleSort2(int[] a) { for (int start = 0; start < a.length - 1; start++) { boolean flag = false; //增加一个判断是否发生过交换的标记 for (int j = a.length - 1; j > start; j--) { if (a[j] < a[j - 1]) { swap(a, j, j - 1); flag = true; } } if (!flag) { //如果扫描一遍发现没有发生交换则说明序列已经有序,退出循环 break; } } return a; }
-
插入排序
/** * 插入排序 */ public static int[] insertSort(int[] a) { for (int i = 1; i < a.length; i++) { int temp = a[i]; int j = i; while (j > 0 && temp < a[j - 1]) { a[j] = a[j - 1]; j--; } a[j] = temp; } return a; }
-
二分排序
/** * 二分排序 * 也称折半插入排序,查找次数为O(n log n),移动次数为O(n^2) * Time complexity: O(n^2) * 稳定性:稳定排序 */ public static int[] binarySort(int[] a) { int i, j; int low, high, mid; int temp; for (i = 1; i < a.length; i++) { temp = a[i]; low = 0; high = i - 1; while (low <= high) { mid = (low + high) / 2; if (a[mid] > temp) { high = mid - 1; } else { low = mid + 1; } } for (j = i - 1; j > high; j--) { a[j + 1] = a[j]; } a[high + 1] = temp; } return a; }
-
选择排序
/** * 选择排序 */ public static int[] selectionSort(int[] a) { for (int i = 0; i < a.length; i++) { for (int j = i + 1; j < a.length; j++) { if (a[i] > a[j]) { swap(a, i, j); } } System.out.println(Arrays.toString(a)); } return a; }
-
希尔排序
/** * 希尔排序 */ public static int[] shellSort(int[] a) { int gap = a.length / 2; while (gap >= 1) { for (int i = gap; i < a.length; i++) { int j; int temp = a[i]; for (j = i - gap; j >= 0 && temp < a[j]; j = j - gap) { a[j + gap] = a[j]; } a[j + gap] = temp; } gap /= 2; } return a; }
-
堆排序
/** * 堆排序 */ public static int[] heapSort(int[] a) { buildMaxHeap(a, a.length - 1); swap(a, 0, a.length - 1); for (int i = 1; i < a.length - 1; i++) { adjustMaxHeap(a, 0, a.length - 1 - i); swap(a, 0, a.length - 1 - i); } return a; } public static void buildMaxHeap(int[] data, int lastIndex) { for (int i = (lastIndex - 1) / 2; i >= 0; i--) { adjustMaxHeap(data, i, lastIndex); } } public static void adjustMaxHeap(int[] data, int parent, int lastIndex) { /* * 通常堆是通过一维数组来实现的。在数组起始位置为 0 的情形中: * 父节点 i 的左子节点在位置 (2*i+1); * 父节点 i 的右子节点在位置 (2*i+2); * 子节点 i 的父节点在位置 floor((i-1)/2); */ while (2 * parent + 1 <= lastIndex) { int maxChildIndex = 2 * parent + 1; // 如果当前左孩子不是末尾元素 if (maxChildIndex < lastIndex) { // 如果左孩子小于右孩子,取右孩子下标 if (data[maxChildIndex] < data[maxChildIndex + 1]) { maxChildIndex++; } } // 比较当前父节点和最大孩子节点 if (data[parent] < data[maxChildIndex]) { swap(data, parent, maxChildIndex); parent = maxChildIndex; } else { break; } } } public static void swap(int[] data, int i, int j) { int temp = data[i]; data[i] = data[j]; data[j] = temp; }
-
快速排序
/** * 快速排序 */ public static int[] quickSort(int[] a) { if (a.length > 0) { quickSortRecursion(a, 0, a.length - 1); } return a; } public static void quickSortRecursion(int[] data, int low, int high) { if (low < high) { int middle = partition(data, low, high); quickSortRecursion(data, low, middle - 1); quickSortRecursion(data, middle + 1, high); } } public static int partition(int[] data, int low, int high) { int temp = data[low]; // 数组的第一个作为中轴 while (low < high) { while (low < high && data[high] >= temp) { high--; } data[low] = data[high]; // 比中轴小的记录移到低端 while (low < high && data[low] <= temp) { low++; } data[high] = data[low]; // 比中轴大的记录移到高端 } data[low] = temp; return low; // 返回中轴的位置 } /** * 快速排序的第二种写法 */ public static int[] quickSort2(int[] a) { qSort(a, 0, a.length - 1); return a; } public static void qSort(int[] sequence, int low, int high) { int pivot = sequence[low]; // 取首元素的为基准 int left = low, right = high; if (low >= high) { return; } swap(sequence, low, high); //将基准与最后一个元素交换 while (true) { //将序列中比基准小的移到基准左边,比基准大的移到基准右边 while (low < high && sequence[low] <= pivot) { low++; } while (low < high && sequence[high] >= pivot) { high--; } if (low < high) { swap(sequence, low, high); } else { break; } } swap(sequence, low, right); //将最后的基准换到正确的位置 //分别对两个子集进行快排 qSort(sequence, left, low - 1); qSort(sequence, low + 1, right); }
-
归并排序
/** * 归并排序 */ public static int[] mergingSort(int[] a) { if (a.length > 0) { mergingSortRecursion(a, 0, a.length - 1); } return a; } public static void mergingSortRecursion(int[] data, int left, int right) { if (left < right) { int middle = (left + right) / 2; mergingSortRecursion(data, left, middle); mergingSortRecursion(data, middle + 1, right); merge(data, left, middle, right); } } public static void merge(int[] data, int left, int middle, int right) { int[] tempArray = new int[data.length]; int i = left; // 左边序列的游标 int j = middle + 1; // 右边序列的游标 int k = left; // 临时序列的游标 // 从两个数组中取出最小的放入中间数组 while (i <= middle && j <= right) { if (data[i] <= data[j]) { tempArray[k++] = data[i++]; } else { tempArray[k++] = data[j++]; } } // 剩余部分依次放入中间数组 while (j <= right) { tempArray[k++] = data[j++]; } while (i <= middle) { tempArray[k++] = data[i++]; } // 将中间数组中的内容复制回原数组 while (left <= right) { data[left] = tempArray[left++]; } }
-
基数排序
/** * 基数排序 */ public static int[] radixSort(int[] a) { int max = 0; for (int i = 0; i < a.length; i++) { max = a[i] > max ? a[i] : max; } int time = 0; while (max > 0) { time++; max /= 10; } List
> queue = new ArrayList<>(); for (int i = 0; i < 10; i++) { queue.add(new ArrayList<>()); } for (int i = 0; i < time; i++) { // 按某位对原数组进行一趟排序 for (int j = 0; j < a.length; j++) { int d = a[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i); ArrayList list = queue.get(d); list.add(a[j]); queue.set(d, list); } // 把queue进行过一趟排序的数据拷贝回原数组 int count = 0; for (int k = 0; k < 10; k++) { while (queue.get(k).size() > 0) { a[count] = queue.get(k).get(0); queue.get(k).remove(0); count++; } } } return a; } -
计数排序
/** * 计数排序法1 取出序号用了少量的比较和循环 */ public static int[] countingSort1(int[] a) { int max = 0; for (int i = 0; i < a.length; i++) { max = a[i] > max ? a[i] : max; } int[] count = new int[max + 1]; for (int i = 0; i < a.length; i++) { count[a[i]]++; } int sum = 0; for (int i = 0; i < count.length; i++) { if (count[i] > 0) { for (int j = 0; j < count[i]; j++) { a[sum + j] = i; } } sum += count[i]; } return a; } /** * 计数排序法2 完全没有使用比较和循环 */ public static int[] countingSort2(int[] a) { int max = 0; for (int i = 0; i < a.length; i++) { max = a[i] > max ? a[i] : max; } int[] count = new int[max + 1]; for (int i = 0; i < a.length; i++) { count[a[i]]++; } for (int i = 1; i < count.length; i++) { count[i] += count[i - 1]; } int[] b = new int[a.length]; for (int i = 0; i < a.length; i++) { b[count[a[i]] - 1] = a[i]; count[a[i]]--; } return b; }
各个方法的测试代码实现如下:
public static void main(String[] args) {
int a[] = {49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35,
25, 53, 51};
System.out.println(Arrays.toString(a));
System.out.println(Arrays.toString(binarySort(a)));
}
运行结果如下:
[49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51]
[4, 5, 12, 13, 15, 17, 18, 23, 25, 27, 34, 34, 35, 38, 49, 49, 51, 53, 54, 56, 62, 64, 65, 76, 78, 97, 98, 99]
Process finished with exit code 0
注:使用Markdown语言编辑文本时,感觉复制代码调格式很麻烦。