- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Faiss:高效相似性搜索与聚类的利器
网络·魚
大数据faiss
Faiss是一个针对大规模向量集合的相似性搜索库,由FacebookAIResearch开发。它提供了一系列高效的算法和数据结构,用于加速向量之间的相似性搜索,特别是在大规模数据集上。本文将介绍Faiss的原理、核心功能以及如何在实际项目中使用它。Faiss原理:近似最近邻搜索:Faiss的核心功能之一是近似最近邻搜索,它能够高效地在大规模数据集中找到与给定查询向量最相似的向量。这种搜索是近似的,
- K近邻算法_分类鸢尾花数据集
_feivirus_
算法机器学习和数学分类机器学习K近邻
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccuracy_score1.数据预处理iris=load_iris()df=pd.DataFrame(data=ir
- 生活越来越好了,关系且越来越淡了!
刷脸的时代
你是不是也很久没有感受到小时候那种近邻如家人的感觉了?是不是很久没有体会到小时候那种做客的热闹了……物质生活越来越好了,可是人们的感情且越来越淡薄了。图片发自App小时候大人基本不怎么监护我们,只要保证不让我们饿肚子就行,出门或者上街,告诉邻居一声就可以了,就是不回家也跟小伙伴一起吃,一起睡。哪家有什么事,根本不用去请,大家自己就来帮忙了,那时候大家都穷,拿的东西虽没有现在的多,但是现在看来且很珍
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 39、离情别意《乌鸦落过的村庄》
亚宁
我考上了大学,成了村里第二名跳过龙门的大学生,全家人为我骄傲,自己也头大的不知姓啥名谁。高远方闻讯把我拦在村口说:“玉明,你可真行,一考就上了大学。不像我折腾了几年都没个结果。你能上大学学习,是多幸福的一件喜事啊!让人羡慕死了。”我有点飘飘然,谦虚说:“我是瞎猫碰上了死耗子,侥幸上线而已。要说学习比你可差远了。”过几天就要去学校报到,父亲请了村里有身份的人来家里吃酒。我坚持叫了高远方,而近邻刘三亮
- 研路漫漫复试篇(四)
Mrchanges
这次文章其实与复试没有直接的关系,但它也坚定了我积极准备复试的决心。过年走亲访友,我了解了许多远亲近邻的消息,总的来说,尽管他们的学历都不算特别高,但都在各自的领域有所成就,也都有幸福美满的家庭。我渴望拥有足够的经济实力,我渴望拥有忠贞的伴侣和幸福的家庭,可我现在一无所有。虽然各位亲朋都在夸赞我学有所成、前途光明,而我却心知肚明——我对自己的未来仍然充满迷茫和怀疑,我还没有什么拿的出手的东西,能够
- K近邻法(K-nearest neighbor,K-NN)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
剑海风云
ArtificialIntelligence人工智能机器学习K近邻法KNN
定义输入:训练数据集(T={(x1,y1),(x2,y2),…,(xN,yN)}\left\{(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)\right\}{(x1,y1),(x2,y2),…,(xN,yN)})其中:xi∈χ⊆Rnx_i\in{\tt\chi}\subseteqR^nxi∈χ⊆Rn:实例的特征向量yi∈yy_i\in{\tty}yi∈y={c1,c2,⋯
- 向量数据库对比分析报告
大霸王龙
行业+领域+业务场景=定制人工智能深度学习python
FAISS、Milvus、Weaviate和OpenAIAPI四个工具的对比分析,主要针对是否支持离线、开发难度、debug支持、生态系统以及Python接口等方面。1.FAISS(FacebookAISimilaritySearch)是否支持离线:支持。FAISS是一个离线库,可以部署在本地或服务器上,不需要网络连接。开发难度:中等。FAISS是一个低级别的工具,需要开发者对近似最近邻搜索算法和
- 【机器学习】K近邻
可口的冰可乐
机器学习机器学习人工智能
2.K近邻K近邻算法(KNN)的基本思想是通过计算待分类样本与训练集中所有样本之间的距离,选取距离最近的K个样本,根据这些样本的标签进行分类或回归。KNN属于非参数学习算法,因为它不假设数据的分布形式,主要依赖距离度量来进行决策。优点简单易懂:KNN算法非常直观,容易理解和实现。无假设:KNN算法对数据没有假设,适用于复杂分布的数据集。适用于多类分类问题:KNN能够处理多类分类问题,只需在投票过程
- 珠海的一个下雨天
秋的树
在珠海的一个下雨天,人们都在做什么?在那些无休止的空闲时间里,人人都穿着裤衩和拖鞋,在屋里懒洋洋地浑身瘫软地躺着,以此来打发时间,直到有人提议打赌傍晚之后是否会有台风出现,为了明天可以不去上班这个共同的目的,无论是远亲近邻还是朋友及朋友的朋友以及同事或者随便那些能聊得来的人,只要他明天也不愿意上班,就都能来“我赌有台风,可不上班”的群里闲晃、聊天、吹牛。对现代人来说,这将会是一个比等待跨年更令人兴
- K近邻(KNN)算法详解及Python实现
天明豆豆
K近邻(KNN)算法详解及Python实现今天浏览网页看到一篇用Python实现K近邻(KNN)算法的详解教程,果断收藏下来,虽然是五年前的文章,可能有些语法已经不适合,但文章语法思路还是可以值得借鉴的,收藏之后以后慢慢研究。KNN依然是一种监督学习算法KNN(KNearestNeighbors,K近邻)算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训
- PyTorch库学习之torch.nn.functional.interpolate(函数)
Midsummer-逐梦
#torchpytorch学习人工智能
PyTorch库学习之torch.nn.functional.interpolate(函数)一、简介torch.nn.functional.interpolate是PyTorch中用于对张量进行上采样或下采样的函数。它支持多种插值方法,例如双线性插值、最近邻插值等,广泛用于图像处理、特征图缩放等场景。二、语法和参数语法torch.nn.functional.interpolate(input,si
- 【机器学习】5. K近邻(KNN)
pen-ai
机器学习机器学习人工智能数据挖掘深度学习神经网络
K近邻(KNN)1.K-NearestNeighbour1.1特点:计算复杂1.2K的设置1.3加权近邻Weightednearestneighbor1.4决策边界DecisionboundaryVoronoiregion2.KNN总结1.K-NearestNeighbourK:超参数(hyperparameter)定义一种距离,参考第三节距离公式计算预测点到其他训练数据的距离找到最近的K个邻居预
- 《三字经》初鉴 其一
南川子
引:人之初,性本善,性相近,習相遠。南川子曰:人之初,无善恶。善恶者,意之动。引:昔孟母,擇鄰處,子不學,斷機杼。南川子曰:择邻而处,此为居家之大要也。常言道:远亲不如近邻。然邻善则居家宁,邻恶则居家不宁。有一善邻,可谓福气。有一恶邻,难免受气。引:子不學,非所宜,幼不學,老何為?南川子曰:莫等闲,白了少年头,空悲切。岁月蹉跎,不可不惜。引:曰喜怒,曰哀懼,愛惡欲,七情具。南川子曰:七情六欲,人所
- 机器学习:knn算法实现图像识别
夜清寒风
机器学习算法人工智能
1、概述使用K-近邻(K-NearestNeighbors,KNN)算法对手写数字进行识别的过程。通过读取一张包含多个手写数字的图片,将其分割成单独的数字图像,并将其作为训练和测试数据集。2、数据处理思路1、图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分2、划分出训练集和测试集3、每个数据的像素点为20*20,将其全部变成一列1*400格式,转换成数值特征4、最后使用
- python库——sklearn的关键组件和参数设置
零 度°
pythonpythonsklearn
文章目录模型构建线性回归逻辑回归决策树分类器随机森林支持向量机K-近邻模型评估交叉验证性能指标特征工程主成分分析标准化和归一化scikit-learn,简称sklearn,是Python中一个广泛使用的机器学习库,它建立在NumPy、SciPy和Matplotlib这些科学计算库之上。sklearn提供了简单而有效的工具来进行数据挖掘和数据分析。我们将介绍sklearn中一些关键组件的参数设置。模
- 四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型
暴躁的大熊
人工智能人工智能机器学习算法
系列文章目录第一章【机器学习】初识机器学习第二章【机器学习】【监督学习】-逻辑回归算法(LogisticRegression)第三章【机器学习】【监督学习】-支持向量机(SVM)第四章【机器学习】【监督学习】-K-近邻算法(K-NN)第五章【机器学习】【监督学习】-决策树(DecisionTrees)第六章【机器学习】【监督学习】-梯度提升机(GradientBoostingMachine,GBM
- 重要的话才说3遍,观音菩萨收灵感大王,为何连念7遍?都念的啥
中山人读文史
观音菩萨收灵感大王,为何很神秘,连念7遍颂语:死的去,活的住走过了车迟国,打败了虎力、鹿力、羊力三大仙,唐僧师徒进入了该国元会县的陈家庄。陈家庄近邻通天河畔。唐僧取经团队,想要继续西行,就必须渡过通天河。四大名著《西游记》里,谈到这条河的神奇之处时,用了3个“惊叹”之处。第一、通天河太长,碑文上有10个小字记载:径过八百里,亘古少人行;第二、通天河太深,孙悟空让八戒试下水的深浅,八戒抛起一块大石头
- 中原焦点团队焦点解决网初18中20张红勋坚持分享第605天约练第232次2021年10月9日读书打卡第505天
啊哈d9387b66a3dc
晚饭晚回了一会,送同事回家的路上楼上邻居打来电话,原来女儿打不开门了。等我匆忙赶到家时,邻居正和女儿一起找开锁的帮忙,很感动,不管门开不开,女儿没有孤单,真是远亲不如近邻。
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 机器学习-近邻KNN算法学习笔记
不会敲代码的陈序员
机器学习算法人工智能
目录一、算法定义KNN算法性能:欠拟合和过拟合KNN算法优缺点二、算法原理算法通俗解释算法的公式欧氏距离曼哈顿距离三、算法实现与应用模型搭建思路KNN算法模型源码代码运行效果图四、总结一、算法定义K最近邻(K-NearestNeighbors,KNN)算法是一种用于分类和回归的监督学习算法。KNN算法的主要思想可以简单概括如下:训练阶段:在训练阶段,KNN算法将所有的训练样本和它们对应的标签存储在
- 封龙山故地重游
3ad24734af2c
图片发自App五一假期我们回到了石家庄,我们决定去封龙山玩儿,小时候妈妈经常带我来封龙山。封龙山不仅有秀美的自然景观,更是一座历史文化名山,传说大禹治水时把兴风作浪的蛟龙锁封在这座山里,顾名封龙山。图片发自App大公庙是为了纪念一位叫张大宏的人,他不仅武功高强,而且慷慨义气,当时盗贼蜂起,闻大公之名,皆不敢近邻,村民们赖以安宁,尊称他为张大公。图片发自App传说大禹治水时,把恶龙封印在山里,派大将
- 惹祸的地:那些死于“小事”的邻里乡情
语语兮
远亲不如近邻,近邻不抵对门。016.19日,发生在河北沧州南皮县。两家人为了争一小块能种树的地,一户人家的男主人残忍地杀死邻居家祖孙三代4人,最小的才3岁。嫌疑人被抓获有人说,那块地属集体的地,可谁想占就占,谁占得早就是谁家的。在这之前,他们是很好的邻居,关系一直不错。也就是说:让事情恶化到如此地步的,归根索源,那块地是祸首!(地表示:我不背这锅,人类自私贪婪~)因为那块地,今年春,嫌疑人的妻子心
- Elasticsearch:什么是 kNN?
Elastic 中国社区官方博客
ElasticsearchAIElasticelasticsearch大数据搜索引擎全文检索人工智能
kNN-K-nearestneighbor定义kNN(即k最近邻算法)是一种机器学习算法,它使用邻近度将一个数据点与其训练并记忆的一组数据进行比较以进行预测。这种基于实例的学习为kNN提供了“惰性学习(lazylearning)”名称,并使算法能够执行分类或回归问题。kNN的假设是相似的点可以在彼此附近找到——物以类聚。作为一种分类算法,kNN将新数据点分配给其邻居中的多数集。作为一种回归算法,k
- 四方邻居聚餐说90-81
霜霜微记
2018-8-22今天是个好日子,四方邻居聚餐,搬家有大半年了,总体来说邻居真的很不错,今年的大桃都没买过,都是邻居送的蟠桃、油桃、大毛桃,甜脆可口,还有时不时地聚餐,有事在邻居群呼叫,随时有人回应。真是验证了那句:远亲不如近邻。聚餐当然得有集体活动,那就是包饺子,饺子馅是事先调好的,大家分工明确,和面的、擀面的、擀饺子皮的、包饺子的,真是人多效率高,虽然我包的饺子上不了台面,但是也助力了,在互相
- 日更20天了
简单d123
写完这篇将会获得一个徽章,是对坚持日更20天的一个奖励,希望再接再厉获得更多徽章。今天过得比较混乱,没有好好的收拾屋子,也没有认真的看书,心情随着我家空置已久的对门要住进新的人家而变得情绪低落,这些年习惯了对门没有邻居的日子。虽说远亲不如近邻,可突然多了个邻居反倒让我内心觉得很不安,其实让我不安的不是新邻居而是与陌生人相处和对未知的抵触与恐惧。说到对未知的恐惧,在樊登读书里听过相关的文章,我该找出
- 论语3.19
23aae7e9bc8e
远亲不如近邻,选择一个好的邻居是多么重要,好的邻居可以时时刻刻教会自己很多东西,孟母三迁也是一样的,为了找个好邻居让孩子有正能量学习,可以搬好几次家
- “邻居病”
闲思碎想
“远亲不如近邻”说的是邻里关系和睦的重要性。邻里之间有事时可以互相有个照应,没事时也可以在一起玩一玩,每天推开门看到的是笑脸,关上门遇到的是温馨,这种日子谁会不喜欢呢?可是今天,我发现有人竟然患上了“邻居病”。爱人身体不适去医院检查,他担心脑瘤啥啥病,在家里也没告诉我,当医生问他家里有没有这类病,我说没有,医生问为啥会想到这个病,他说我们以前的邻居是这个病。医生笑着说,刚才那两个母女也是因为邻居,
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =