1. ①|A|≠0,A可逆
⇦⇨②r(A)=n,A满秩
⇦⇨③α₁,α₂,…αn线性无关
⇦⇨④Ax=0仅有零解
2. ①|A|=0,A不可逆
⇦⇨②r(A)
⇦⇨④Ax=0有非零解
二阶行列式是以两个向量为邻边的平行四边形的面积,三阶行列式是以三个向量为邻边的平行六面体的体积,n阶行列式是以n个向量为邻边的n位图形的体积。
所以,读者应有这样的观点:把行列式看作是由若干个向量拼成的。
行列式的值非0时,具体是多少,只是量的问题。行列式的值是否为0,是一个质的问题。
例:①D₃≠0,则体积不为0,3个向量线性无关。若D₃=0,则3个向量线性相关。
②Dn≠0,n个向量线性无关。Dn=0,n个向量线性相关。
2.n阶行列式定义 (逆序数法)
【注意,行下标要顺排。求列标的逆序数,确定正负号】
举例2:行列式的逆序数定义是“对角线法则”的由来。对角线法则只适用于二阶与三阶行列式。
1.余子式
去掉 a i j a_{ij} aij所在的第i行、第j列元素,余下元素组成的n-1阶子行列式,称为 a i j a_{ij} aij的余子式,记作 M i j M_{ij} Mij
2.代数余子式
代数余子式: A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(−1)i+jMij
3.行列式的行(列)展开定理
(1)行展开定理:同一行的元素与代数余子式相乘,为行列式的值,即 ∑ k = 1 n a i k A i k = ∣ A ∣ ( i = 1 , 2 , 3... n ) \sum\limits_{k=1}^na_{ik}A_{ik}=|A| \qquad (i=1,2,3...n) k=1∑naikAik=∣A∣(i=1,2,3...n) 【将n阶行列式 降阶为 n个n-1阶行列式】
(2)不同行的元素与余子式相乘为0: ∑ k = 1 n a i k A j k = 0 ( i ≠ j ) \sum\limits_{k=1}^na_{ik}A_{jk}=0 \qquad (i≠j) k=1∑naikAjk=0(i=j)
1.行列互换,其值不变: ∣ A ∣ = ∣ A T ∣ |A|=|A^T| ∣A∣=∣AT∣ 【行列地位等价】
2.行列式中 某行(列)元素全为0,则行列式值为0
3.若行列式某一行有公因子k,则可以提到行列式的外面 【倍乘】
4.行列式中某行元素均是两个元素之和,则可拆成两个行列式之和。反之,可相加。 (单行可拆性、单行可加性)
5.行列式中 两行(列)互换,行列式值反号
6.行列式中 两行元素相等或对应成比例,则行列式值为0
7.某行乘k倍加到另一行,行列式值不变 【倍加】
1. ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A|·|B| ∣AB∣=∣A∣⋅∣B∣ (A B为同阶方阵)
推论: ∣ A n ∣ = ∣ A ∣ n |A^n|=|A|^n ∣An∣=∣A∣n
2.若A为n阶方阵,则 ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| ∣kA∣=kn∣A∣
3.一般地, ∣ A + B ∣ ≠ ∣ A ∣ + ∣ B ∣ |A+B|≠|A|+|B| ∣A+B∣=∣A∣+∣B∣
4. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} ∣A∗∣=∣A∣n−1
5.不满秩、不可逆、向量组线性相关,则行列式 = 0 满秩、可逆、行列式非零、线性无关的关系
右上三角行列式、左下三角行列式、对角行列式:主对角线元素的乘积
逆序数 τ ( n , n − 1 , n − 2 , . . . 1 ) = ( n − 1 ) + ( n − 2 ) + . . . + 1 = n ( n − 1 ) 2 τ(n,n-1,n-2,...1)=(n-1)+(n-2)+...+1=\dfrac{n(n-1)}{2} τ(n,n−1,n−2,...1)=(n−1)+(n−2)+...+1=2n(n−1)
例题1:计算行列式
分析:凑分块矩阵、零矩阵。将13列互换,再将24行互换
答案: ( a 1 a 4 − b 1 b 4 ) ( a 2 a 3 − b 2 b 3 ) (a_1a_4-b_1b_4)(a_2a_3-b_2b_3) (a1a4−b1b4)(a2a3−b2b3)
(1)阶数不高:直接展开 ①凑0最多 ②按展开后基本型最多(三角行列式最多)的方式展开
(2)阶数较高,n阶:递推法
(1)递推法:建立 D n D_n Dn 与 D n − 1 D_{n-1} Dn−1 的关系式,从而实现递推。
①元素分布规律相同
② D n − 1 D_{n-1} Dn−1只比 D n D_n Dn 少一阶
(2)展开方法
①三对角行列式方法:所有的行加到最后一行 (所有列加到第一列),然后展开。观察负号。
②两斜一横(竖):对爪尾的两个尖尖进行展开,找递推规律
分析:异爪型行列式,按照最后一行展开。发现余子式均为主对角线行列式
答案: λ 4 + λ 3 + 2 λ 2 + 3 λ + 4 λ^4+λ^3+2λ^2+3λ+4 λ4+λ3+2λ2+3λ+4
答案: 2 n + 1 − 2 2^{n+1}-2 2n+1−2
全部加到第一列,提取公因式,第一列全为1。
再将第一列下方全消为0,按照第一列展开。
①化7大基本行列式、7大性质、行展开定理、逆序数法
②递推法:n阶异爪型行列式
③含x:行列式表示的函数和方程
答案:a+b
答案:10
1.矩阵:
矩阵本身是一个数表,不进行运算。矩阵由若干个向量组成。
①m×n矩阵 ②n阶方阵 (n阶矩阵,即为n×n矩阵)
1.方阵定义:
方阵为行列数相等的矩阵,如Ann、Amm
2.只有方阵才有的性质:
(1)行列式
只有方阵才有行列式。
别再问汤家凤老师3行4列的行列式怎么算了。“你有没有发现把我吓死了”(doge)
(2)逆矩阵
1.可逆矩阵一定是方阵。
2.如果矩阵A是可逆的,其逆矩阵是唯一的。
(3)特征值
只有方阵才有特征值与特征向量
五大矩阵运算:①求行列式 ②求转置 ③求逆 ④求伴随 ⑤求幂
(4)矩阵乘法
c i j c_{ij} cij为 a i a_i ai和 b j b_j bj两向量的内积
注:
矩阵乘法不满足交换律,不能随意交换位置, A B ≠ B A AB≠BA AB=BA
故:① ( A B ) 2 ≠ A 2 B 2 (AB)^2≠A^2B^2 (AB)2=A2B2,正确的写法应该是 ( A B ) 2 = A B A B ≠ A A B B (AB)^2=ABAB≠AABB (AB)2=ABAB=AABB
② ( A + B ) 2 ≠ A 2 + 2 A B + B 2 (A+B)^2≠A^2+2AB+B^2 (A+B)2=A2+2AB+B2,正确的写法应该是 ( A + B ) 2 = ( A + B ) ( A + B ) = A 2 + A B + B A + B 2 (A+B)^2=(A+B)(A+B)=A^2+AB+BA+B^2 (A+B)2=(A+B)(A+B)=A2+AB+BA+B2
(5)转置、转置矩阵
①若A为方阵, ∣ A ∣ = ∣ A T ∣ |A|=|A^T| ∣A∣=∣AT∣
② ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
求矩阵的幂An:
①r(A)=1:An=[tr(A)]n-1·A
②试算A2、A3,归纳An
③A = B+C,An = (B+C)n。要求BC=CB,可用二项展开式 。一般令C=kE
1.零矩阵
O
2.单位矩阵
E或I
3.数量矩阵
kE
Λ = ( λ 1 λ 2 . . . λ n ) Λ=\left(\begin{array}{cc} λ₁ & & \\ & λ₂ & \\ & & ...\\ & & & λ_n \end{array}\right) Λ= λ1λ2...λn
对角阵的幂:主对角线上元素各取幂
Λ n = ( λ 1 n λ 2 n . . . λ n n ) Λ^n=\left(\begin{array}{cc} {λ₁}^n & & \\ & {λ₂}^n & \\ & & ...\\ & & & {λ_n}^n \end{array}\right) Λn= λ1nλ2n...λnn
举例n=-1:
对角阵的逆矩阵:主对角线上元素都取倒数
Λ − 1 = ( 1 λ 1 1 λ 2 . . . 1 λ n ) Λ^{-1}=\left(\begin{array}{cc} \frac{1}{λ₁} & & \\ & \frac{1}{λ₂} & \\ & & ...\\ & & & \frac{1}{λ_n} \end{array}\right) Λ−1= λ11λ21...λn1
5.上/下三角矩阵
上(下)三角矩阵和对角阵的特征值,均为主对角线元素
6.对称矩阵
A T = A ⇔ a i j = a j i A^T=A\Leftrightarrow a_{ij}=a_{ji} AT=A⇔aij=aji
若 a i j = A i j a_{ij}=A_{ij} aij=Aij,则 A T = A ∗ A^T=A^* AT=A∗
7.反对称矩阵
A T = − A ⇔ { a i j = − a j i , i ≠ j a i i = 0 A^T=-A \Leftrightarrow \left\{\begin{aligned} a_{ij}&=-a_{ji},i≠j \\ a_{ii}&=0 \end{aligned}\right. AT=−A⇔{aijaii=−aji,i=j=0
8.正交矩阵
定义: A T A = A A T = E A^TA=AA^T=E ATA=AAT=E
等价于: ⇔ A T = A − 1 \Leftrightarrow A^T=A^{-1} ⇔AT=A−1
性质:副对角线要对调位置
(1)分块矩阵的逆矩阵:
①对角阵
主对角线: ( A O O B ) − 1 = ( A − 1 O O B − 1 ) \left(\begin{array}{cc} A & O \\ O & B \end{array}\right)^{-1}=\left(\begin{array}{cc} A^{-1} & O \\ O & B^{-1} \end{array}\right) (AOOB)−1=(A−1OOB−1)
副对角线: ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \left(\begin{array}{cc} O & A \\ B & O \end{array}\right)^{-1}=\left(\begin{array}{cc} O &B^{-1} \\ A^{-1} & O \end{array}\right) (OBAO)−1=(OA−1B−1O)
②三角阵
左乘同行,右乘同列,取相反数
主对角线:
( A O C B ) − 1 = ( A − 1 O − B − 1 C A − 1 B − 1 ) \left(\begin{array}{cc} A & O \\ C & B \end{array}\right)^{-1}=\left(\begin{array}{cc} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{array}\right) (ACOB)−1=(A−1−B−1CA−1OB−1)
( A C O B ) − 1 = ( A − 1 − A − 1 C B − 1 O B − 1 ) \left(\begin{array}{cc} A & C \\ O & B \end{array}\right)^{-1}=\left(\begin{array}{cc} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{array}\right) (AOCB)−1=(A−1O−A−1CB−1B−1)
副对角线:
( O A B C ) − 1 = ( − B − 1 C A − 1 B − 1 A − 1 O ) \left(\begin{array}{cc} O & A \\ B & C \end{array}\right)^{-1}=\left(\begin{array}{cc} -B^{-1}CA^{-1} &B^{-1} \\ A^{-1} & O \end{array}\right) (OBAC)−1=(−B−1CA−1A−1B−1O)
( C A B O ) − 1 = ( O B − 1 A − 1 − A − 1 C B − 1 ) \left(\begin{array}{cc} C & A \\ B & O \end{array}\right)^{-1}=\left(\begin{array}{cc} O &B^{-1} \\ A^{-1} & -A^{-1}CB^{-1} \end{array}\right) (CBAO)−1=(OA−1B−1−A−1CB−1)
(2)分块矩阵的转置矩阵
主对角线: ( A O O B ) T = ( A T O O B T ) \left(\begin{array}{cc} A & O \\ O & B \end{array}\right)^T=\left(\begin{array}{cc} A^T & O \\ O & B^T \end{array}\right) (AOOB)T=(ATOOBT)
副对角线: ( O A B O ) T = ( O B T A T O ) \left(\begin{array}{cc} O & A \\ B & O \end{array}\right)^T=\left(\begin{array}{cc} O &B^T \\ A^T & O \end{array}\right) (OBAO)T=(OATBTO)
10.幂零矩阵
A k = O A^k=O Ak=O
幂零矩阵的主对角线元素为0,每升一次幂,元素就向右上方移动一斜行,秩减一。
11.幂幺矩阵
A k = E A^k=E Ak=E
12.行阶梯形矩阵
①若有零行,全在下方:所有非零行在所有零行的上面
②从行上看,出现连续0的个数自上而下严格单增:所有非零行的首个非零元所在列标严格单增
13.行最简形矩阵
①首先是行阶梯形矩阵
②每个非零行的首个非零元(主元)为1
③每个非零行的首个非零元所在列的其他元素均为0
14.标准形矩阵
左上角为单位矩阵,其他元素均为0
分析:A的秩为3,A²的秩为2,A³的秩为1,An=A4的秩为0
答案:1
例题2:08年5. 幂零阵、可逆矩阵定义、立方和公式、立方差公式
分析:由 A 3 = O A³=O A3=O得 E ± A 3 = E E±A^3=E E±A3=E
即 E = E + A 3 = ( E + A ) ( E 2 − A E + A 2 ) = ( E + A ) ( E − A + A 2 ) E=E+A^3=(E+A)(E^2-AE+A^2)=(E+A)(E-A+A²) E=E+A3=(E+A)(E2−AE+A2)=(E+A)(E−A+A2),则 E + A E+A E+A可逆且 ( E + A ) − 1 = E − A + A 2 (E+A)^{-1}=E-A+A² (E+A)−1=E−A+A2
即 E = E − A 3 = ( E − A ) ( E 2 + A E + A 2 ) = ( E − A ) ( E + A + A 2 ) E=E-A^3=(E-A)(E^2+AE+A^2)=(E-A)(E+A+A^2) E=E−A3=(E−A)(E2+AE+A2)=(E−A)(E+A+A2),则 E − A E-A E−A可逆且 ( E − A ) − 1 = E + A + A 2 (E-A)^{-1}=E+A+A^2 (E−A)−1=E+A+A2
答案:C
例题3:18年6.
1.对于n阶方阵A,若存在一个n阶方阵B,使得 A B = E 或 B A = E AB=E\ 或\ BA=E AB=E 或 BA=E,则A、B互逆:
① A = B − 1 , B = A − 1 A=B^{-1},B=A^{-1} A=B−1,B=A−1
② A B = E = B A AB=E=BA AB=E=BA
2.特殊情况:若 A ( k B ) = E A(kB)=E A(kB)=E,则 k B kB kB为A的逆矩阵
例题1:
分析:
A B = A + B AB = A+B AB=A+B
A B − A − B = O AB -A-B=O AB−A−B=O
A ( B − E ) − B = O A(B-E)-B=O A(B−E)−B=O
A ( B − E ) − ( B − E ) = E A(B-E)-(B-E)=E A(B−E)−(B−E)=E
( A − E ) ( B − E ) = E (A-E)(B-E)=E (A−E)(B−E)=E
∴ A − E A-E A−E与 B − E B-E B−E互为逆矩阵
答案:A
解:由 A 2 + A − 4 E = O A²+A-4E=O A2+A−4E=O,移项得 A 2 + A − 2 E = 2 E A²+A-2E=2E A2+A−2E=2E
得 ( A + 2 E ) ( A − E ) = 2 E (A+2E)(A-E)=2E (A+2E)(A−E)=2E ∴ ( A − E ) − 1 = 1 2 ( A + 2 E ) ∴(A-E)^{-1}=\dfrac{1}{2}(A+2E) ∴(A−E)−1=21(A+2E) 注意,系数要放在括号外,不要把矩阵写成分式
答案: 1 2 ( A + 2 E ) \dfrac{1}{2}(A+2E) 21(A+2E)
例题3:23李林四(三)15. A B = E = B A AB=E=BA AB=E=BA
分析:
凑可逆阵:由 A 2 = 2 A B + E A²=2AB+E A2=2AB+E,移项得 A 2 − 2 A B = E A²-2AB=E A2−2AB=E,即 A ( A − 2 B ) = E A(A-2B)=E A(A−2B)=E。
∴ A A A与 A − 2 B A-2B A−2B互为可逆阵,∴ A ( A − 2 B ) = ( A − 2 B ) A A(A-2B)=(A-2B)A A(A−2B)=(A−2B)A,即 A 2 − 2 A B = A 2 − 2 B A A²-2AB=A²-2BA A2−2AB=A2−2BA。即 A B = B A AB=BA AB=BA。
∴ ∣ A B − B A + 2 A ∣ = ∣ 2 A ∣ = 2 3 ∣ A ∣ = 8 × 1 = 8 |AB-BA+2A|=|2A|=2³|A|=8×1=8 ∣AB−BA+2A∣=∣2A∣=23∣A∣=8×1=8
答案:8
答案:-E
例题5:08年5. 幂零阵、可逆矩阵定义、立方和公式、立方差公式
① E 3 = E 3 + A 3 = ( E + A ) ( E 2 − A E + A 2 ) = ( E + A ) ( E − A + A 2 ) E^3=E^3+A^3=(E+A)(E^2-AE+A^2)=(E+A)(E-A+A²) E3=E3+A3=(E+A)(E2−AE+A2)=(E+A)(E−A+A2),则 E + A E+A E+A可逆且 ( E + A ) − 1 = E − A + A 2 (E+A)^{-1}=E-A+A² (E+A)−1=E−A+A2
② E 3 = E 3 − A 3 = ( E − A ) ( E 2 + A E + A 2 ) = ( E − A ) ( E + A + A 2 ) E^3=E^3-A^3=(E-A)(E^2+AE+A^2)=(E-A)(E+A+A^2) E3=E3−A3=(E−A)(E2+AE+A2)=(E−A)(E+A+A2),则 E − A E-A E−A可逆且 ( E − A ) − 1 = E + A + A 2 (E-A)^{-1}=E+A+A^2 (E−A)−1=E+A+A2
答案:C
1.若n阶方阵A可逆,则A的逆矩阵必唯一
2.若n阶方阵A可逆,则 ∣ A ∣ ≠ 0 |A|≠0 ∣A∣=0
3.若n阶方阵P为可逆矩阵,则 ( P − 1 ) T = ( P T ) − 1 (P^{-1})^T=(P^T)^{-1} (P−1)T=(PT)−1
4.乘可逆矩阵,不改变原矩阵的秩
分析:
A = ( 1 0 1 1 1 2 0 1 1 ) → ( 1 0 1 0 1 1 0 0 0 ) A=\left(\begin{array}{cc} 1 & 0 & 1\\ 1 & 1 & 2\\ 0 & 1 & 1\\ \end{array}\right)→\left(\begin{array}{cc} 1 & 0 & 1\\ 0 & 1 & 1\\ 0 & 0 & 0\\ \end{array}\right) A= 110011121 → 100010110 ∴ r ( A ) = 2 ∴r(A)=2 ∴r(A)=2
矩阵 ( A α 1 , A α 2 , A α 3 ) = A ( α 1 , α 2 , α 3 ) (Aα_1,Aα_2,Aα_3)=A(α_1,α_2,α_3) (Aα1,Aα2,Aα3)=A(α1,α2,α3)
∵ α 1 , α 2 , α 3 α_1,α_2,α_3 α1,α2,α3线性无关 ∴ ( α 1 , α 2 , α 3 ) (α_1,α_2,α_3) (α1,α2,α3)为可逆矩阵
∴ r ( A α 1 , A α 2 , A α 3 ) = r ( A ) = 2 r(Aα_1,Aα_2,Aα_3)=r(A)=2 r(Aα1,Aα2,Aα3)=r(A)=2
答案:2
例题2:17年5.
A B = E AB=E AB=E,则 A − 1 = B A^{-1}=B A−1=B
求数值矩阵的逆矩阵,步骤:
①求|A|≠0
②求A*
③写出 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\dfrac{1}{|A|}A^* A−1=∣A∣1A∗
注意,求 A ∗ A^* A∗ 的时候:① A ∗ A^* A∗和 A i j A_{ij} Aij的位置是竖着求的 ②注意负号 A i j = − ( 1 ) i + j M i j A_{ij}=-(1)^{i+j}M_{ij} Aij=−(1)i+jMij
例题:2阶矩阵的逆矩阵 = 二阶矩阵的伴随矩阵 / 行列式
A*:主对调,副变号
若 A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) A=\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{array}\right) A= a11a21a31a12a22a32a13a23a33 ,则 A ∗ = ( A 11 A 21 A 31 A 12 A 22 A 32 A 13 A 23 A 33 ) A^*=\left(\begin{array}{ccc} A_{11} & A_{21} & A_{31}\\ A_{12} & A_{22} & A_{32}\\ A_{13} & A_{23} & A_{33} \end{array}\right) A∗= A11A12A13A21A22A23A31A32A33
推广为:·*=||E
推导: A ⋅ A ∗ = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . a n 1 a n 2 . . . a n n ) ( A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 . . . . . . . . . A 1 n A 2 n . . . A n n ) = ( ∣ A ∣ ∣ A ∣ . . . ∣ A ∣ ) = ∣ A ∣ E A·A^* =\left(\begin{array}{cccc} a_{11} &a_{12} &... &a_{1n} \\ a_{21}&a_{22} &... &a_{2n}\\ ...&... &&...\\ a_{n1}&a_{n2}&...&a_{nn} \end{array}\right)\left(\begin{array}{cccc} A_{11}&A_{21} &... &A_{n1} \\ A_{12}&A_{22} &... &A_{n2}\\ ...&... &&...\\ A_{1n}&A_{2n}&...&A_{nn} \end{array}\right)=\left(\begin{array}{cccc} |A| & & & \\ &|A| & &\\ & &...&\\ &&&|A| \end{array}\right)=|A|E A⋅A∗= a11a21...an1a12a22...an2.........a1na2n...ann A11A12...A1nA21A22...A2n.........An1An2...Ann = ∣A∣∣A∣...∣A∣ =∣A∣E
2. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*| = |A|^{n-1} ∣A∗∣=∣A∣n−1
( A ∗ ) ∗ = ∣ A ∣ n − 2 ⋅ A (A^*)^*=|A|^{n-2}·A (A∗)∗=∣A∣n−2⋅A
3. r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)= \left\{ \begin{aligned} n,\quad & r(A)=n \\ 1,\quad &r(A)=n-1 \\ 0,\quad &r(A)
4. ( k A ∗ ) n = k n − 1 A ∗ (kA^*)^n=k^{n-1}A^* (kA∗)n=kn−1A∗
答案:C
分析:
答案:-1
以下三种变换,称为矩阵的初等变换:
1.倍乘:用非零常数k乘矩阵的某一行(列)
2.互换:互换矩阵中某两行(列)的位置
3.倍加:将矩阵的某一行(列)的k倍加到另一行(列)
对行进行初等变换,称为初等行变换;对列进行初等变换,称为初等列变换
1.初等变换只有秩不变,其他:迹、特征值、行列式均可能改变。
理论上不改变特征值的初等变换,只有相似变换和正交变换。
初等矩阵:由单位矩阵经过一次初等变换得到的矩阵
1.倍乘初等矩阵 E i ( k ) E_i(k) Ei(k):第 i i i行(或第2列)乘 k k k倍
2.互换初等矩阵 E i j E_{ij} Eij:第 i , j i,j i,j行(或第 i , j i,j i,j列)互换
3.倍加初等矩阵 E i j ( k ) E_{ij}(k) Eij(k):第 j j j行的 k k k倍加到第 i i i行 (或第 i i i列的k倍加到第 j j j列)
初等矩阵\性质 | 转置 | 求逆 |
---|---|---|
①倍乘初等矩阵 | E i T ( k ) = E i ( k ) {E_i}^T(k)=E_i(k) EiT(k)=Ei(k),不变 | E i − 1 ( k ) = E i ( 1 k ) {E_i}^{-1}(k)=E_i(\dfrac{1}{k}) Ei−1(k)=Ei(k1) |
②互换初等矩阵 | E i j T = E i j {E_{ij}}^T= E_{ij} EijT=Eij,不变 | E i j − 1 = E i j {E_{ij}}^{-1}= E_{ij} Eij−1=Eij,不变 |
③倍加初等矩阵 | E i j T ( k ) = E j i T ( k ) {E_{ij}}^T(k)={E_{ji}}^T(k) EijT(k)=EjiT(k),ij互换 | E i j − 1 ( k ) = E j i ( − k ) {E_{ij}}^{-1}(k)={E_{ji}}(-k) Eij−1(k)=Eji(−k) |
例题2:14年13.
①设A是m×n矩阵,A中最高阶非零子式的阶数称为矩阵A的秩,记为r(A)
②若存在 k k k阶子式不为零,且任意 k + 1 k+1 k+1阶子式(如果有的话)全为零,则 r ( A ) = k r(A)=k r(A)=k,且 r ( A n × n ) = n ⇔ ∣ A ∣ ≠ 0 ⇔ A 可逆 r(A_{n×n})=n \Leftrightarrow |A|≠0 \Leftrightarrow A可逆 r(An×n)=n⇔∣A∣=0⇔A可逆
③矩阵秩的本质:组成该矩阵的线性无关的向量的个数,有且仅有k个
k阶子式:A中任取k行k列,交叉点的元素按照原来的位置排列的k阶行列式,称为k阶子式。
1. r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(AB)≤min\{ r(A),r(B)\} r(AB)≤min{r(A),r(B)}
推论①:若A可逆,则 r ( A B ) = r ( B A ) = r ( B ) r(AB)=r(BA)=r(B) r(AB)=r(BA)=r(B)
2. A B = O AB=O AB=O,则 r ( A ) + r ( B ) ≤ A 的列数 r(A)+r(B)≤A的列数 r(A)+r(B)≤A的列数
3. r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B)≤r(A)+r(B) r(A+B)≤r(A)+r(B)
r ( A + B ) ≤ r ( A , B ) ≤ r ( A ) + r ( B ) r(A+B)≤r(A,B)≤r(A)+r(B) r(A+B)≤r(A,B)≤r(A)+r(B)
4.若A为m×n矩阵,矩阵的秩≤行秩,≤列秩。即 r ( A ) ≤ m i n { m , n } r(A)≤min\{m,n\} r(A)≤min{m,n}
5. r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) r(A)=r(A^T)=r(AA^T)=r(A^TA) r(A)=r(AT)=r(AAT)=r(ATA)
6. r ( A , B ) = r ( A , B ) T = r ( A T B T ) r(A,B)=r(A,B)^T=r\dbinom{A^T}{B^T} r(A,B)=r(A,B)T=r(BTAT)
7.分块矩阵的秩:
① r ( A O O B ) = r ( A ) + r ( B ) r\left(\begin{array}{cc} A & O \\ O & B \end{array}\right)=r(A)+r(B) r(AOOB)=r(A)+r(B)
② r ( A ) + r ( B ) ≤ r ( A O C B ) ≤ r ( A ) + r ( B ) + r ( C ) r(A)+r(B)≤r\left(\begin{array}{cc} A & O \\ C & B \end{array}\right)≤r(A)+r(B)+r(C) r(A)+r(B)≤r(ACOB)≤r(A)+r(B)+r(C)
分析:矩阵是列分块的,可以作列变换而不改变矩阵的秩
A、B:(A,AB)=A(E,B)
∵r(A,b)≥r(A),∴①r(A,AB)≥r(A)
∵r(AB)≤r(A)且r(AB)≤r(B),∴②r(A,AB)=r[A(E,B)]≤r(A)
综上①②,r(A,AB)=r(A)
A✔B❌
C: m a x { r ( A ) , r ( ) B } ≤ r ( A , B ) ≤ r ( A ) + r ( B ) max\{r(A),r()B\}≤r(A,B)≤r(A)+r(B) max{r(A),r()B}≤r(A,B)≤r(A)+r(B) 。C❌
D: r ( A , B ) = r ( A , B ) T = r ( A T B T ) r(A,B)=r(A,B)^T=r\dbinom{A^T}{B^T} r(A,B)=r(A,B)T=r(BTAT),D❌
答案:A
1.等价矩阵:
①如果矩阵A经初等变换得矩阵B,则称矩阵A与矩阵B等价
②同型下,r(A)=r(B)
2.等价标准型:
满秩矩阵可经初等变换为单位阵,不满秩则只能化为 ( E r O O O ) \left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right) (ErOOO)形式