- 导入包,建立字典
DATA_HUB
包含数据集的url和验证文件完整性的sha-1密钥。
- 定义
download()
函数用来下载数据集, 将数据集缓存在本地目录(默认情况下为…/data)中, 并返回下载文件的名称。
- 定义
download_extract()
函数下载并解压缩一个zip或tar文件,定义download_all()
将所有数据集从DATA_HUB下载到缓存目录中。
- 进行数据标准化得到
all_features
- 定义损失函数
loss
和线性模型net
- 采用价格预测的对数
log_rmse()
来衡量差异
- 定义训练函数
train()
,采用Adam
优化器
- 定义K折交叉验证
get_k_fold_data()
,并且在K折交叉验证中训练K次k_fold()
- 最后进行预测并保存预测文件
train_and_pred()
import hashlib
import os
import tarfile
import zipfile
import requests
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
"""
定义download函数:
1、下载数据集,将数据集缓存在本地目录(../data),并返回下载文件的名称
2、如果缓存目录中存在此数据集文件,并且与sha-1与存储在DATA_HUB中相匹配,则使用缓存的文件
"""
def download(name, cache_dir=os.path.join('..', 'data')):
"""下载一个DATA_HUB中的文件,返回本地文件名"""
assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
url, sha1_hash = DATA_HUB[name]
os.makedirs(cache_dir, exist_ok=True)
fname = os.path.join(cache_dir, url.split('/')[-1])
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash:
return fname
print(f'正在从{url}下载{fname}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:
f.write(r.content)
return fname
"""
实现两个实用函数:
1、一个将下载并解压缩一个zip/tar文件
2、将使用的数据集从DATA_HUB下载到缓存目录
"""
def download_extract(name, folder=None):
"""下载并解压zip/tar文件"""
fname = dowanload(name)
base_dir = os.path.dirname(fname)
data_dir = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.Zipfile(fname, 'r')
elif ext in ('.tar', '.gz'):
fp = tarfile.open(fname, 'r')
else:
assert False, '只有zip/tar文件可以解压'
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
def download_all():
"""下载DATA_HUB中的所有文件"""
for name in DATA_HUB:
download(name)
get_ipython().run_line_magic('matplotlib', 'inline')
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
DATA_HUB['kaggle_house_train'] = (
DATA_URL + 'kaggle_house_pred_train.csv',
'585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = (
DATA_URL + 'kaggle_house_pred_test.csv',
'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:-1]))
"""
数据预处理:
1、将所有缺失的值替换为相应特征的平均值
2、为了将所有数据放在共同的尺度上,通过特征重新缩放到零均值和单位方差来标准化数据
(1)方便优化
(2)不知道哪些特征是相关的,所以不想让惩罚分配给一个特征的系数比分配给其他特征的系数更大
3、处理离散值,用独热编码来替换。如"MSZoning_RL"为1,"MSZoning_RM"为0
"""
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
lambda x: (x - x.mean()) / (x.std()))
all_features[numeric_features] = all_features[numeric_features].fillna(0)
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(
train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
"""
训练一个带有损失平方的线性模型:
1、损失函数为损失平方
2、线性模型作为基线模型
"""
loss = nn.MSELoss()
in_features = train_features.shape[1]
def get_net():
net = nn.Sequential(nn.Linear(in_features,1))
return net
def log_rmse(net, features, labels):
clipped_preds = torch.clamp(net(features), 1, float('inf'))
rmse = torch.sqrt(loss(torch.log(clipped_preds),
torch.log(labels)))
return rmse.item()
"""
定义训练函数:
1、加载训练数据集
2、使用Adam优化器(对初始学习率不那么敏感)
3、进行训练:计算损失,进行梯度优化,返回训练损失和测试损失
"""
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
optimizer = torch.optim.Adam(net.parameters(),
lr = learning_rate,
weight_decay = weight_decay)
for epoch in range(num_epochs):
for X,y in train_iter:
optimizer.zero_grad()
l = loss(net(X), y)
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
"""
定义K折交叉验证:
1、当k > 1时,进行K折交叉验证,将数据集分为K份
2、选择第i个切片作为验证集,其余部分作为训练数据
3、第一片的训练数据直接填进去,之后的使用cat进行相连接
"""
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat([X_train, X_part], 0)
y_train = torch.cat([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid
"""
在K折交叉验证中训练K次:
1、返回训练和验证误差的平均值
2、可视化训练误差和验证误差
"""
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
legend=['train', 'valid'], yscale='log')
print(f'折{i + 1}, 训练log rmse{float(train_ls[-1]):f},'
f'验证log rmse{float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay,
batch_size)
print(f'{k}-折验证:平均训练log rmse:{float(train_l):f},'
f'平均验证log rmse:{float(valid_l):f}')
"""
提交Kaggle预测:
1、使用所有数据进行训练,得到模型
2、该模型可以应用到测试集上,将预测保存在csv文件
"""
def train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
print(f'训练log rmse:{float(train_ls[-1]):f}')
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size)