- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- Focal Loss的简述与实现
友人Chi
人工智能机器学习深度学习
文章目录交叉熵损失函数样本不均衡问题FocalLossFocalLoss的代码实现交叉熵损失函数Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p})Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)其中p^\hat{p}p^为预测概率大小。此处的交叉
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- Pytorch-张量基础操作
小森( ﹡ˆoˆ﹡ )
实战Pytorchpython人工智能tensorflow
张量张量是一个多维数组,它是标量、向量和矩阵概念的推广。在深度学习中,张量被广泛用于表示数据和模型参数。具体来说,张量的“张”可以理解为“维度”,张量的阶或维数称为秩。例如,零阶张量是一个标量,一阶张量是一个向量,二阶张量是一个矩阵,三阶及以上的张量则可以看作是高维数组。在不同的上下文中,张量的意义可能会有所不同:数据表示:在深度学习中,张量通常用于表示数据。例如,一幅RGB图像可以表示为一个三维
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- PyTorch-线性回归
一个高效工作的家伙
pythonpytorch线性回归python
已经进入大模微调的时代,但是学习pytorch,对后续学习rasa框架有一定帮助吧。x_train=np.array([[3.3],[4.4],[5.5],[6.71],[6.93],[4.168],[9.779],[6.182],[7.59],[2.167],[7.042],[10.791],[5.313],[7.997],[3.1]],dtype=np.float32)y_train=np.a
- 交叉熵损失函数基本概念及公式
小桥流水---人工智能
人工智能机器学习算法深度学习
Cross-EntropyLoss1.二分类2.对于多类别分类问题,其公式可以表示为:3.公式深度挖掘解释——交叉熵损失函数公式中(log)的解释总结交叉熵损失函数(Cross-EntropyLoss)是在机器学习和深度学习中常用的一种损失函数,主要用于衡量模型输出与真实标签之间的差异,特别适用于分类任务,尤其是多类别分类问题。1.二分类交叉熵损失函数的数学公式可以有多种表示形式。对于二分类问题,
- 交叉熵损失函数(Cross-Entropy Loss)的基本概念与程序代码
小桥流水---人工智能
人工智能机器学习算法人工智能深度学习
交叉熵损失函数(Cross-EntropyLoss)是机器学习和深度学习中常用的损失函数之一,用于分类问题。其基本概念如下:1.基本解释:交叉熵损失函数衡量了模型预测的概率分布与真实概率分布之间的差异。在分类问题中,通常有一个真实的类别标签,而模型会输出一个概率分布,表示样本属于各个类别的概率。交叉熵损失函数通过比较这两个分布来计算损失,从而指导模型的优化。具体来说,对于二分类问题,真实标签通常表
- 【论文解读】Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Queen_sy
深度学习人工智能
目录1Introduction1Docre任务比句子级任务更具挑战性:2现有的Docre方法:3现有的Docre方法存在三个局限性2Methodology1使用轴向注意力模块作为特征提取器:2第二,提出适应性焦距损失3第三用知识蒸馏相关知识类别不平衡问题长尾类分布交叉熵损失和二元交叉熵损失二元交叉熵损失定义为知识蒸馏全文翻译https://baijiahao.baidu.com/s?id=1737
- 为什么在半监督中的无监督阶段CE常常配合置信度使用而MSE通常不会
UndefindX
人工智能
在半监督学习中,结合无监督损失(如交叉熵(CE)损失)和置信度阈值的策略主要用于确保模型从高质量、高置信度的伪标签中学习。这种方法特别适用于分类问题,其中CE损失直接作用于模型的预测类别概率和目标(真实或伪)标签之间。使用置信度阈值可以帮助模型专注于那些它最有可能正确分类的样本,从而提高学习的效率和准确性,减少错误标签的负面影响。对于均方误差(MSE)损失,在某些情况下,其使用方式可能不同,原因如
- deep learning update error loss = nan
xyq_learn
为什么用tensorflow训练网络,出现了loss=nan最常见的原因是学习率太高。对于分类问题,学习率太高会导致模型「顽固」地认为某些数据属于错误的类,而正确的类的概率为0(实际是浮点数下溢),这样用交叉熵就会算出无穷大的损失函数。一旦出现这种情况,无穷大对参数求导就会变成NaN,之后整个网络的参数就都变成NaN了。解决方法是调小学习率,甚至把学习率调成0,看看问题是否仍然存在。若问题消失,那
- conda搭建旧版本pytorch虚拟环境——DASR复现
BigHeadBro
condapytorch深度学习python
前言:Windows10下复现DASR模型时,在搭建环境的过程中遇到了一些问题。附:DASR需要python=3.6,pytorch=1.1.0,numpy,skimage,imagio,matplotlib,cv2。搭建旧版本的pytorch虚拟环境常用有两种方式:方法一:conda命令方式,可以参考如下链接安装老版本的Pytorch-腾讯云开发者社区-腾讯云(tencent.com)举例如下#
- 如何通过极大似然估计 MLE Maximum Likelihood Estimation 获得 交叉熵 Cross Entropy 以及 均方损失函数 Mean Square Loss ?
shimly123456
StanfordCS229个人开发
似然函数定义以及极大似然估计MLE(完成)---------------------------------------------------------------------------------------start注意:P(A|B)并不总是等于P(B|A),原因如下:首先要明白一个事情,什么是似然函数?以下是CHATGPTMathSolver的回答:我自己解释一下,意思就是:观察到一组
- pytorch-索引切片
青灯有味是儿时
leetcode算法职场和发展
importtorcha=torch.rand(4,3,28,28)结果:会是一个四维的空间a.shape结果:(torch.Size[4,3,28,28])a[0].shape结果:torch.Size([3,28,28])a[0,0].shape结果:torch.Size([28,28])a[0,0,0].shape结果:torch.Size([28])a[0,0,3,6]结果:tensor(
- 熵:信息熵、交叉熵、相对熵
Reore
信息熵信息熵H(X)可以看做,对X中的样本进行编码所需要的编码长度的期望值。交叉熵交叉熵可以理解为,现在有两个分布,真实分布p和非真实分布q,我们的样本来自真实分布p。按照真实分布p来编码样本所需的编码长度的期望为,这就是上面说的信息熵H(p)按照不真实分布q来编码样本所需的编码长度的期望为,这就是所谓的交叉熵H(p,q)相对熵这里引申出KL散度D(p||q)=H(p,q)-H(p)=,也叫做相对
- Python学习笔记--Pytorch-数据类型
花季秃头少女
python入门笔记pythonpytorch学习
张量数据类型数据类型Dim1的标量Dim是size的长度,size\shape是tensor的形状,tensor指的是矩阵中具体的数值a.numel().numel()返回tensor的内存大小a.dim()返回长度importtorcha=torch.randn(2,3)a.type()type(a)##合法化检验isinstance(a,torch.FloatTensor)##在CPU上部署,
- 【深度学习】Softmax实现手写数字识别
住在天上的云
深度学习深度学习人工智能Softmax手写数字识别驭风计划
实训1:Softmax实现手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1任务目标1.1简介本次案例中,你需要用python实现Softmax回归方法,用于MNIST手写数字数据集分类任务。你需要完成前向计算loss和参数更新。你需要首先实现Softmax函数和交叉熵损失函数的计算。y=softmax(WTx+b)L=CrossEntropy(y,label)y=softm
- 【深度学习】loss与梯度与交叉熵的关系
sdbhewfoqi
深度学习深度学习人工智能
问的GPT3.5模型训练时loss与梯度的关系?在深度学习模型训练过程中,loss(损失函数)与梯度(gradient)之间存在密切关系。损失函数衡量模型在给定输入上的预测输出与实际输出之间的差距,而梯度则表示损失函数相对于模型参数的变化率。以下是loss与梯度之间的关系:1.梯度下降:梯度下降是一种优化算法,用于逐步调整模型参数,以最小化损失函数。在每次迭代中,梯度下降根据损失函数的梯度来更新模
- 计算机设计大赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别
iuerfee
python
文章目录0前言1课题背景2具体实现3数据收集和处理3卷积神经网络2.1卷积层2.2池化层2.3激活函数:2.4全连接层2.5使用tensorflow中keras模块实现卷积神经网络4MobileNetV2网络5损失函数softmax交叉熵5.1softmax函数5.2交叉熵损失函数6优化器SGD7学习率衰减策略6最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习的昆虫识别算法研究与实现**
- (阅读笔记)SecureML: A System for Scalable Privacy-Preserving Machine Learning
你看见的我
安全学习
SecureML动机基础知识SecureML文章总结动机用户(例如物联网设备)计算、电池资源受限,选择外包数据给云或边缘执行密集型计算;用户数据包含隐私信息,数据控制权的转移意味着数据隐私泄露风险;选择加密原语处理数据后上传,实现密文计算(网络推理或训练)是重要挑战。基础知识线性回归模型,值连续,损失函数多选择最小欧式距离计算;逻辑回归模型,二分类任务,值离散,损失函数多选择交叉熵计算;神经网络模
- 深度学习入门笔记(6)—— Logistic Regression
cnhwl
深度学习入门笔记深度学习机器学习逻辑回归人工智能python
对比第三节中的Adaline和LogisticRegression,可以发现它们只有两点不同:1、激活函数,Adaline中的激活函数是恒等函数(线性),而LogisticRegression中的激活函数是Sigmoid函数(非线性);2、损失函数,Adaline中的损失函数是均方误差,而LogisticRegression中的损失函数则是交叉熵。Sigmoid函数如图所示,其值域为0到1,输入为
- ASTRAIOS: Parameter-Efficient Instruction Tuning Code Large Language Models
UnknownBody
LLM语言模型人工智能自然语言处理
本文是LLM系列文章,针对《ASTRAIOS:Parameter-EfficientInstructionTuningCodeLargeLanguageModels》的翻译。ASTRAIOS:参数高效指令调优代码大型语言模型摘要1引言2ASTRAIOS套机与基准3前言研究:交叉熵4主要结果:任务性能5更进一步分析6讨论7相关工作8结论摘要大型语言模型(LLM)的全参数微调(FFT)的高成本导致了一
- 互联网加竞赛 基于深度学习的植物识别算法 - cnn opencv python
Mr.D学长
pythonjava
文章目录0前言1课题背景2具体实现3数据收集和处理3MobileNetV2网络4损失函数softmax交叉熵4.1softmax函数4.2交叉熵损失函数5优化器SGD6最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习的植物识别算法**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:4分创新点:4分更多资料,项目分享:ht
- 机器学习:Softmax回归(Python)
捕捉一只Diu
机器学习回归python笔记
Softmax回归(多分类)logistic_regression_mulclass.pyimportnumpyasnpimportmatplotlib.pyplotaspltclassLogisticRegression_MulClass:"""逻辑回归,采用梯度下降算法+正则化,交叉熵损失函数,实现多分类,Softmax函数"""def__init__(self,fit_intercept=T
- pix2pix图像着色学习记录(pytorch实现)
欧拉雅卡
pytorch
1、BCELossBCELoss(binary_crossentropy)二分类交叉熵损失函数,用于图片多标签分类,n张图片分m类,会得到n*m的矩阵,经过sigmoid把矩阵数值变换到0~1,然后通过如下公式计算得到:不同分类问题用到的激活函数和损失函数有所不同:分类问题名称输出层使用卷积函数对应的损失函数二分类sigmoid函数二分类交叉熵损失函数多分类softmax函数多分类交叉熵损失函数多
- 目标检测中的损失函数汇总
senbinyu
损失函数目标检测深度学习深度学习人工智能
和图像分割中将损失函数分为基于分布,基于区域以及基于边界的损失函数不一样,目标检测经常可以认为由2类最基础的损失,分类损失和回归损失而组成。分类损失CEloss,交叉熵损失交叉熵损失,二分类损失(binaryCEloss)是它的一种极端情况.在机器学习部分就有介绍它。如下图所示,y是真实标签,a是预测标签,一般可通过sigmoid,softmax得到,x是样本,n是样本数目,和对数似然等价。foc
- 决策树相关知识点以及面试题
mym_74
决策树
文章目录基础知识点熵条件熵联合熵交叉熵信息增益信息增益率Gini指数什么是决策树举例决策树怎么生成的ID3算法C4.5算法和其他模型相比决策树的优点基尼指数(CART算法)决策树的生成最小二乘回归树剪枝一些问题参考基础知识点熵熵是一个物理概念,代表一个系统的混乱程度,在信息论里用于表示一个随机变量不确定性的度量,熵越大,不确定性越高。假设$X$是一个离散分布的随机变量,取值有限,那么的熵可以表示为
- pytorch-动手学深度学习
比三毛多一根头发
pytorch学习人工智能
目录2.预备知识2.1数据操作torch.arange()x.shapex.numel()x.reshape(m,n)torch.zeros((2,3,4))torch.ones((2,3,4))torch.randn(3,4)torch.tensor([[2,1,4,3],[1,2,3,4],[4,3,2,1]])x+y,x-y,x*y,x/y,x**y,x==ytorch.exp(x)torc
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》