C语言 实现 AES 128 位加密解密
1、调用函数
#include "stdio.h"
#include "stdlib.h"
#include
#include "aes.h"
extern OL_APITABLE_T *AP_interface;
typedef struct{
uint32_t eK[44], dK[44]; // encKey, decKey
int Nr; // 10 rounds
}AesKey;
#define BLOCKSIZE 16 //AES-128分组长度为16字节
// uint8_t y[4] -> uint32_t x
#define LOAD32H(x, y) \
do { (x) = ((uint32_t)((y)[0] & 0xff)<<24) | ((uint32_t)((y)[1] & 0xff)<<16) | \
((uint32_t)((y)[2] & 0xff)<<8) | ((uint32_t)((y)[3] & 0xff));} while(0)
// uint32_t x -> uint8_t y[4]
#define STORE32H(x, y) \
do { (y)[0] = (uint8_t)(((x)>>24) & 0xff); (y)[1] = (uint8_t)(((x)>>16) & 0xff); \
(y)[2] = (uint8_t)(((x)>>8) & 0xff); (y)[3] = (uint8_t)((x) & 0xff); } while(0)
// 从uint32_t x中提取从低位开始的第n个字节
#define BYTE(x, n) (((x) >> (8 * (n))) & 0xff)
/* used for keyExpansion */
// 字节替换然后循环左移1位
#define MIX(x) (((S[BYTE(x, 2)] << 24) & 0xff000000) ^ ((S[BYTE(x, 1)] << 16) & 0xff0000) ^ \
((S[BYTE(x, 0)] << 8) & 0xff00) ^ (S[BYTE(x, 3)] & 0xff))
// uint32_t x循环左移n位
#define ROF32(x, n) (((x) << (n)) | ((x) >> (32-(n))))
// uint32_t x循环右移n位
#define ROR32(x, n) (((x) >> (n)) | ((x) << (32-(n))))
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
// AES-128轮常量
static const uint32_t rcon[10] = {
0x01000000UL, 0x02000000UL, 0x04000000UL, 0x08000000UL, 0x10000000UL,
0x20000000UL, 0x40000000UL, 0x80000000UL, 0x1B000000UL, 0x36000000UL
};
// S盒
unsigned char S[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
//逆S盒
unsigned char inv_S[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
/* copy in[16] to state[4][4] */
int loadStateArray(uint8_t (*state)[4], const uint8_t *in) {
int i=0,j=0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[j][i] = *in++;
}
}
return 0;
}
/* copy state[4][4] to out[16] */
int storeStateArray(uint8_t (*state)[4], uint8_t *out) {
int i=0,j=0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
*out++ = state[j][i];
}
}
return 0;
}
//秘钥扩展
int keyExpansion(const uint8_t *key, uint32_t keyLen, AesKey *aesKey) {
uint32_t *w = aesKey->eK; //加密秘钥
uint32_t *v = aesKey->dK; //解密秘钥
int i=0,j=0;
if (NULL == key || NULL == aesKey){
AP_interface->ol_print("keyExpansion param is NULL\n");
return -1;
}
if (keyLen != 16){
AP_interface->ol_print("keyExpansion keyLen = %d, Not support.\n", keyLen);
return -1;
}
/* keyLen is 16 Bytes, generate uint32_t W[44]. */
/* W[0-3] */
for (i = 0; i < 4; ++i) {
LOAD32H(w[i], key + 4*i);
}
/* W[4-43] */
for (i = 0; i < 10; ++i) {
w[4] = w[0] ^ MIX(w[3]) ^ rcon[i];
w[5] = w[1] ^ w[4];
w[6] = w[2] ^ w[5];
w[7] = w[3] ^ w[6];
w += 4;
}
w = aesKey->eK+44 - 4;
//解密秘钥矩阵为加密秘钥矩阵的倒序,方便使用,把ek的11个矩阵倒序排列分配给dk作为解密秘钥
//即dk[0-3]=ek[41-44], dk[4-7]=ek[37-40]... dk[41-44]=ek[0-3]
for (j = 0; j < 11; ++j) {
for (i = 0; i < 4; ++i) {
v[i] = w[i];
}
w -= 4;
v += 4;
}
return 0;
}
// 轮秘钥加
int addRoundKey(uint8_t (*state)[4], const uint32_t *key) {
uint8_t k[4][4];
int i=0,j=0;
/* i: row, j: col */
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
k[i][j] = (uint8_t) BYTE(key[j], 3 - i); /* 把 uint32 key[4] 先转换为矩阵 uint8 k[4][4] */
state[i][j] ^= k[i][j];
}
}
return 0;
}
//字节替换
int subBytes(uint8_t (*state)[4]) {
/* i: row, j: col */
int i=0,j=0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[i][j] = S[state[i][j]]; //直接使用原始字节作为S盒数据下标
}
}
return 0;
}
//逆字节替换
int invSubBytes(uint8_t (*state)[4]) {
/* i: row, j: col */
int i=0,j=0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[i][j] = inv_S[state[i][j]];
}
}
return 0;
}
//行移位
int shiftRows(uint8_t (*state)[4]) {
uint32_t block[4] = {0};
int i=0,j=0;
/* i: row */
for (i = 0; i < 4; ++i) {
//便于行循环移位,先把一行4字节拼成uint_32结构,移位后再转成独立的4个字节uint8_t
LOAD32H(block[i], state[i]);
block[i] = ROF32(block[i], 8*i);
STORE32H(block[i], state[i]);
}
return 0;
}
//逆行移位
int invShiftRows(uint8_t (*state)[4]) {
uint32_t block[4] = {0};
int i=0,j=0;
/* i: row */
for (i = 0; i < 4; ++i) {
LOAD32H(block[i], state[i]);
block[i] = ROR32(block[i], 8*i);
STORE32H(block[i], state[i]);
}
return 0;
}
/* Galois Field (256) Multiplication of two Bytes */
// 两字节的伽罗华域乘法运算
uint8_t GMul(uint8_t u, uint8_t v) {
uint8_t p = 0;
int i=0,j=0,flag = 0;
for (i = 0; i < 8; ++i) {
if (u & 0x01) { //
p ^= v;
}
flag = (v & 0x80);
v <<= 1;
if (flag) {
v ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
}
u >>= 1;
}
return p;
}
// 列混合
int mixColumns(uint8_t (*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = {{0x02, 0x03, 0x01, 0x01},
{0x01, 0x02, 0x03, 0x01},
{0x01, 0x01, 0x02, 0x03},
{0x03, 0x01, 0x01, 0x02}};
int i=0,j=0;
/* copy state[4][4] to tmp[4][4] */
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j){
tmp[i][j] = state[i][j];
}
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) { //伽罗华域加法和乘法
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}
return 0;
}
// 逆列混合
int invMixColumns(uint8_t (*state)[4]) {
uint8_t tmp[4][4];
uint8_t M[4][4] = {{0x0E, 0x0B, 0x0D, 0x09},
{0x09, 0x0E, 0x0B, 0x0D},
{0x0D, 0x09, 0x0E, 0x0B},
{0x0B, 0x0D, 0x09, 0x0E}}; //使用列混合矩阵的逆矩阵
int i=0,j=0;
/* copy state[4][4] to tmp[4][4] */
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j){
tmp[i][j] = state[i][j];
}
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
state[i][j] = GMul(M[i][0], tmp[0][j]) ^ GMul(M[i][1], tmp[1][j])
^ GMul(M[i][2], tmp[2][j]) ^ GMul(M[i][3], tmp[3][j]);
}
}
return 0;
}
2、加密方法
// AES-128加密接口,输入key应为16字节长度,输入长度应该是16字节整倍数,
// 这样输出长度与输入长度相同,函数调用外部为输出数据分配内存
int aesEncrypt(const uint8_t *key, uint32_t keyLen, const uint8_t *pt, uint8_t *ct, uint32_t len) {
AesKey aesKey;
uint8_t *pos = ct;
const uint32_t *rk = aesKey.eK; //解密秘钥指针
uint8_t out[BLOCKSIZE] = {0};
uint8_t actualKey[16] = {0};
uint8_t state[4][4] = {0};
int i=0,j=0;
if (NULL == key || NULL == pt || NULL == ct){
AP_interface->ol_print("param err.\n");
return -1;
}
if (keyLen > 16){
AP_interface->ol_print("keyLen must be 16.\n");
return -1;
}
if (len % BLOCKSIZE){
AP_interface->ol_print("inLen is invalid.\n");
return -1;
}
memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey); // 秘钥扩展
// 使用ECB模式循环加密多个分组长度的数据
for (i = 0; i < len; i += BLOCKSIZE) {
// 把16字节的明文转换为4x4状态矩阵来进行处理
loadStateArray(state, pt);
// 轮秘钥加
addRoundKey(state, rk);
for (j = 1; j < 10; ++j) {
rk += 4;
subBytes(state); // 字节替换
shiftRows(state); // 行移位
mixColumns(state); // 列混合
addRoundKey(state, rk); // 轮秘钥加
}
subBytes(state); // 字节替换
shiftRows(state); // 行移位
// 此处不进行列混合
addRoundKey(state, rk+4); // 轮秘钥加
// 把4x4状态矩阵转换为uint8_t一维数组输出保存
storeStateArray(state, pos);
pos += BLOCKSIZE; // 加密数据内存指针移动到下一个分组
pt += BLOCKSIZE; // 明文数据指针移动到下一个分组
rk = aesKey.eK; // 恢复rk指针到秘钥初始位置
}
return 0;
}
3、解密方法
// AES128解密, 参数要求同加密
int aesDecrypt(const uint8_t *key, uint32_t keyLen, const uint8_t *ct, uint8_t *pt, uint32_t len) {
AesKey aesKey;
uint8_t *pos = pt;
const uint32_t *rk = aesKey.dK; //解密秘钥指针
uint8_t out[BLOCKSIZE] = {0};
uint8_t actualKey[16] = {0};
uint8_t state[4][4] = {0};
int i=0,j=0;
if (NULL == key || NULL == ct || NULL == pt){
AP_interface->ol_print("param err.\n");
return -1;
}
if (keyLen > 16){
AP_interface->ol_print("keyLen must be 16.\n");
return -1;
}
if (len % BLOCKSIZE){
AP_interface->ol_print("inLen is invalid.\n");
return -1;
}
memcpy(actualKey, key, keyLen);
keyExpansion(actualKey, 16, &aesKey); //秘钥扩展,同加密
for (i = 0; i < len; i += BLOCKSIZE) {
// 把16字节的密文转换为4x4状态矩阵来进行处理
loadStateArray(state, ct);
// 轮秘钥加,同加密
addRoundKey(state, rk);
for (j = 1; j < 10; ++j) {
rk += 4;
invShiftRows(state); // 逆行移位
invSubBytes(state); // 逆字节替换,这两步顺序可以颠倒
addRoundKey(state, rk); // 轮秘钥加,同加密
invMixColumns(state); // 逆列混合
}
invSubBytes(state); // 逆字节替换
invShiftRows(state); // 逆行移位
// 此处没有逆列混合
addRoundKey(state, rk+4); // 轮秘钥加,同加密
storeStateArray(state, pos); // 保存明文数据
pos += BLOCKSIZE; // 输出数据内存指针移位分组长度
ct += BLOCKSIZE; // 输入数据内存指针移位分组长度
rk = aesKey.dK; // 恢复rk指针到秘钥初始位置
}
return 0;
}