Linux中YOLO格式数据集划分

1.文件放置

JPEGImages:存放数据集照片
labels:存放yolo格式的txt文件
DataSet:用来存放我们划分后的图片和txt文件
这几个

 2.代码

       代码参考如下链接,但是在linux中代码中的 '\\' 需要修改成 '/', 将代码放在与上诉文件夹相同的位置运行,运行成功DataSet中就会生成所需文件夹。代码中可以按照自己想要的比列分。(1条消息) YOLOv5数据集划分脚本(train、val、test)_yolov5 val_叱咤风云灬龙的博客-CSDN博客

import os, shutil, random
from tqdm import tqdm
 
def split_img(img_path, label_path, split_list):
    try :   
        Data = 'DataSet'
        # Data是你要将要创建的文件夹路径(路径一定是相对于你当前的这个脚本而言的)
        os.mkdir(Data)
 
        train_img_dir = Data + '/images/train'
        val_img_dir = Data + '/images/val'
        test_img_dir = Data + '/images/test'
 
        train_label_dir = Data + '/labels/train'
        val_label_dir = Data + '/labels/val'
        test_label_dir = Data + '/labels/test'
 
        # 创建文件夹
        os.makedirs(train_img_dir)
        os.makedirs(train_label_dir)
        os.makedirs(val_img_dir)
        os.makedirs(val_label_dir)
        os.makedirs(test_img_dir)
        os.makedirs(test_label_dir)
 
    except:
        print('文件目录已存在')
        
    train, val, test = split_list
    all_img = os.listdir(img_path)
    all_img_path = [os.path.join(img_path, img) for img in all_img]
    # all_label = os.listdir(label_path)
    # all_label_path = [os.path.join(label_path, label) for label in all_label]
    train_img = random.sample(all_img_path, int(train * len(all_img_path)))
    train_img_copy = [os.path.join(train_img_dir, img.split('/')[-1]) for img in train_img]
    train_label = [toLabelPath(img, label_path) for img in train_img]
    train_label_copy = [os.path.join(train_label_dir, label.split('/')[-1]) for label in train_label]
    for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):
        _copy(train_img[i], train_img_dir)
        _copy(train_label[i], train_label_dir)
        all_img_path.remove(train_img[i])
    val_img = random.sample(all_img_path, int(val / (val + test) * len(all_img_path)))
    val_label = [toLabelPath(img, label_path) for img in val_img]
    for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):
        _copy(val_img[i], val_img_dir)
        _copy(val_label[i], val_label_dir)
        all_img_path.remove(val_img[i])
    test_img = all_img_path
    test_label = [toLabelPath(img, label_path) for img in test_img]
    for i in tqdm(range(len(test_img)), desc='test ', ncols=80, unit='img'):
        _copy(test_img[i], test_img_dir)
        _copy(test_label[i], test_label_dir)
 
 
def _copy(from_path, to_path):
    shutil.copy(from_path, to_path)
 
def toLabelPath(img_path, label_path):
    img = img_path.split('/')[-1]
    label = img.split('.jpg')[0] + '.txt'
    return os.path.join(label_path, label)
 
def main():
    img_path = 'JPEGImages'
    label_path = 'labels'
    split_list = [0.8, 0.1, 0.1]	# 数据集划分比例[train:val:test]
    split_img(img_path, label_path, split_list)
 
if __name__ == '__main__':
    main()

3.DataSet文件夹

DataSet
  ---images   # 划分后的图片
     -----train
     -----test
     -----val
  ---labels   # 划分后的txt
     -----train
     -----test
     -----val

4.数据yaml文件

数据yaml文件的路径填写的为我们分割过后的图片的相对路径(相对于train.py)
nc:自己数据集的类别数
names:自己数据集的类别名 

Linux中YOLO格式数据集划分_第1张图片

你可能感兴趣的:(深度学习,深度学习)