leetcode刷题(133)——剑指 Offer 07. 重建二叉树

输入某二叉树的前序遍历和中序遍历的结果,请构建该二叉树并返回其根节点。

假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

示例 1:
leetcode刷题(133)——剑指 Offer 07. 重建二叉树_第1张图片

Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]

示例 2:

Input: preorder = [-1], inorder = [-1]
Output: [-1]

解题思路:

前序遍历性质: 节点按照 [ 根节点 | 左子树 | 右子树 ] 排序。
中序遍历性质: 节点按照 [ 左子树 | 根节点 | 右子树 ] 排序。

以题目示例为例:

前序遍历划分 [ 3 | 9 | 20 15 7 ]
中序遍历划分 [ 9 | 3 | 15 20 7 ]
根据以上性质,可得出以下推论:

前序遍历的首元素 为 树的根节点 node 的值。
在中序遍历中搜索根节点 node 的索引 ,可将 中序遍历 划分为 [ 左子树 | 根节点 | 右子树 ] 。
根据中序遍历中的左(右)子树的节点数量,可将 前序遍历 划分为 [ 根节点 | 左子树 | 右子树 ] 。

leetcode刷题(133)——剑指 Offer 07. 重建二叉树_第2张图片
通过以上三步,可确定 三个节点 :1.树的根节点、2.左子树根节点、3.右子树根节点。

根据「分治算法」思想,对于树的左、右子树,仍可复用以上方法划分子树的左右子树。

分治算法解析:
递推参数: 根节点在前序遍历的索引 root 、子树在中序遍历的左边界 left 、子树在中序遍历的右边界 right ;

终止条件: 当 left > right ,代表已经越过叶节点,此时返回 nullnull ;

递推工作:

建立根节点 node : 节点值为 preorder[root] ;
划分左右子树: 查找根节点在中序遍历 inorder 中的索引 i ;
为了提升效率,本文使用哈希表 dic 存储中序遍历的值与索引的映射,查找操作的时间复杂度为 O(1)O(1) ;

构建左右子树: 开启左右子树递归;
leetcode刷题(133)——剑指 Offer 07. 重建二叉树_第3张图片
TIPS: i - left + root + 1含义为 根节点索引 + 左子树长度 + 1

返回值: 回溯返回 node ,作为上一层递归中根节点的左 / 右子节点;

复杂度分析:
时间复杂度 O(N): 其中 N 为树的节点数量。初始化 HashMap 需遍历 inorder ,占用 O(N) 。递归共建立 N个节点,每层递归中的节点建立、搜索操作占用 O(1) ,因此使用 O(N)时间。
空间复杂度 O(N) : HashMap 使用 O(N)额外空间;最差情况下(输入二叉树为链表时),递归深度达到 N ,占用 O(N)的栈帧空间;因此总共使用 O(N) 空间。

注意:本文方法只适用于 “无重复节点值” 的二叉树。

class Solution {
    int[] preorder;
    HashMap dic = new HashMap<>();
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        this.preorder = preorder;
        for(int i = 0; i < inorder.length; i++)
            dic.put(inorder[i], i);
        return recur(0, 0, inorder.length - 1);
    }
    TreeNode recur(int root, int left, int right) {
        if(left > right) return null;                          // 递归终止
        TreeNode node = new TreeNode(preorder[root]);          // 建立根节点
        int i = dic.get(preorder[root]);                       // 划分根节点、左子树、右子树
        node.left = recur(root + 1, left, i - 1);              // 开启左子树递归
        node.right = recur(root + i - left + 1, i + 1, right); // 开启右子树递归
        return node;                                           // 回溯返回根节点
    }
}

你可能感兴趣的:(leetcode,leetcode,算法,数据结构)