快速查找
流程中,如果没有
找到方法实现
,无论是走到CheckMiss
还JumpMiss
,最终都会走到__objc_msgSend_uncached
汇编函数
- 在主流环境arm64环境为条件条件,在
objc-msg-arm64.s
文件中查找__objc_msgSend_uncached
的汇编实现,核心是MethodTableLookup
,源码如下
STATIC_ENTRY __objc_msgSend_uncached
UNWIND __objc_msgSend_uncached, FrameWithNoSaves
// THIS IS NOT A CALLABLE C FUNCTION
// Out-of-band p16 is the class to search
MethodTableLookup
TailCallFunctionPointer x17
END_ENTRY __objc_msgSend_uncached
- 搜索
MethodTableLookup
,核心是lookUpImpOrForward
,源码如下:
.macro MethodTableLookup
stmfd sp!, {r0-r3,r7,lr}
add r7, sp, #16
sub sp, #8 // align stack
FP_SAVE
// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
.if $0 == NORMAL
// receiver already in r0
// selector already in r1
.else
mov r0, r1 // receiver
mov r1, r2 // selector
.endif
mov r2, r9 // class to search
mov r3, #3 // LOOKUP_INITIALIZE | LOOKUP_INITIALIZE
blx _lookUpImpOrForward
mov r12, r0 // r12 = IMP
.if $0 == NORMAL
cmp r12, r12 // set eq for nonstret forwarding
.else
tst r12, r12 // set ne for stret forwarding
.endif
FP_RESTORE
add sp, #8 // align stack
ldmfd sp!, {r0-r3,r7,lr}
.endmacro
通过汇编进行分析
-
在
main
函数[person say666];
中打断点,通过Debug->Debug Worldflow->Always Show dissasembly
进入汇编,如图
-
在
_objc_msgSend_uncached
加一个断,controller+step into
进入,如图
最后走到的就是lookUpImpOrForward
,此时并不是汇编实现
C/C++
中调用 汇编 ,去查找汇编
时,C/C++
调用的方法需要多加
一个下划线
汇编中调用C/C++
方法时,去查找C/C++
方法,需要将汇编调用的方法去掉
一个下划线
慢速查找 - C/C++
-
汇编
部分的提示,全局搜索lookUpImpOrForward
,在objc-runtime-new.mm
文件中找到了源码实现,这是一个c
实现的函数
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
// 定义的消息转发
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil;
Class curClass;
runtimeLock.assertUnlocked();
// 快速查找,如果找到则直接返回imp
//目的:防止多线程操作时,刚好调用函数,此时缓存进来了
if (fastpath(behavior & LOOKUP_CACHE)) {
imp = cache_getImp(cls, sel);
if (imp) goto done_nolock;
}
//加锁,目的是保证读取的线程安全
runtimeLock.lock();
//判断是否是一个已知的类:判断当前类是否是已经被认可的类,即已经加载的类
checkIsKnownClass(cls);
//判断类是否实现,如果没有,需要先实现,此时的目的是为了确定父类链,方法后续的循环
if (slowpath(!cls->isRealized())) {
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
}
//判断类是否初始化,如果没有,需要先初始化
if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
}
runtimeLock.assertLocked();
curClass = cls;
//----查找类的缓存
// unreasonableClassCount -- 表示类的迭代的上限
//(猜测这里递归的原因是attempts在第一次循环时作了减一操作,然后再次循环时,仍在上限的范围内,所以可以继续递归)
for (unsigned attempts = unreasonableClassCount();;) {
//---当前类方法列表(采用二分查找算法),如果找到,则返回,将方法缓存到cache中
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp;
goto done;
}
//当前类 = 当前类的父类,并判断父类是否为nil
if (slowpath((curClass = curClass->superclass) == nil)) {
//--未找到方法实现,方法解析器也不行,使用转发
imp = forward_imp;
break;
}
// 如果父类链中存在循环,则停止
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// --父类缓存
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// 如果在父类中找到了forward,则停止查找,且不缓存,首先调用此类的方法解析器
break;
}
if (fastpath(imp)) {
//如果在父类中,找到了此方法,将其存储到cache中
goto done;
}
}
//没有找到方法实现,尝试一次方法解析
if (slowpath(behavior & LOOKUP_RESOLVER)) {
//动态方法决议的控制条件,表示流程只走一次
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
done:
//存储到缓存
log_and_fill_cache(cls, imp, sel, inst, curClass);
//解锁
runtimeLock.unlock();
done_nolock:
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
步骤如下:
【第一步】
cahce缓存
中进行查找即快速查找
,找到并直接返回imp
,反之则进【第二部】-
【第二步】判断
cls
- 是否
已知类
,有才能找到缓存
- 类是否
实现
,如果没有,则需要先实现,确定其父类链,此时实例化的目的是为了确定父类链、ro、以及rw等,方法后续数据的读取以及查找的循环 - 是否
初始化
,如果没有,则callInitialize
初始化
- 是否
-
【第三步】
for循环
,类继承链 或者 元类继承链
的顺序查找- 当前cls的方法列表中使用二分查找算法查找方法,如果找到,则进入
cache
写入流程并返回imp
,如果没有找到
,则返回nil
,继续循环
。 - 查找父类,如果没有找,imp置换成
forward_imp
,进行消息转发,并终止递归
进入【第四步】
-
父类链
中存在循环,则报错,终止循环
- 当前cls的方法列表中使用二分查找算法查找方法,如果找到,则进入
-
【第四步】判断是否执行过动态方法解析
- 如果
没有
,执行动态方法解析
- 如果执行过一次
动态方法解析
,则走到消息转发流程
- 如果
getMethodNoSuper_nolock方法:二分查找方法列表
二分查找的核心代码
ALWAYS_INLINE static method_t *
findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
ASSERT(list);
const method_t * const first = &list->first;
const method_t *base = first;
const method_t *probe;
uintptr_t keyValue = (uintptr_t)key; //key 等于 say666
uint32_t count;
//base相当于low,count是max,probe是middle,这就是二分
for (count = list->count; count != 0; count >>= 1) {
//从首地址+下标 --> 移动到中间位置(count >> 1 左移1位即 count/2 = 4)
probe = base + (count >> 1);
uintptr_t probeValue = (uintptr_t)probe->name;
//如果查找的key的keyvalue等于中间位置(probe)的probeValue,则直接返回中间位置
if (keyValue == probeValue) {
// -- while 平移 -- 排除分类重名方法
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
//排除分类重名方法(方法的存储是先存储类方法,在存储分类---按照先进后出的原则,分类方法最先出,而我们要取的类方法,所以需要先排除分类方法)
//如果是两个分类,就看谁先进行加载
probe--;
}
return (method_t *)probe;
}
//如果keyValue 大于 probeValue,就往probe即中间位置的右边查找
if (keyValue > probeValue) {
base = probe + 1;
count--;
}
}
return nil;
}
算法原理简述为:从第一次查找开始,每次都取中间位置,与想查找的key的value值作比较,如果相等,则需要排除分类方法,然后将查询到的位置的方法实现返回,如果不相等,则需要继续二分查找,如果循环至count = 0还是没有找到,则直接返回nil,如下所示:
动态方法分析
动态方法的源码如下,在没有找到实现的放方法时会崩溃,因此苹果爸爸resolveInstanceMethod
通过这个方法再给一次机会进行特殊处理。我们将在下一篇进行详细讨论。
+ (BOOL)resolveInstanceMethod:(SEL)sel{
if (sel == @selector(say666)) {
NSLog(@"%@ 来了",NSStringFromSelector(sel));
IMP imp = class_getMethodImplementation(self, @selector(sayMaster));
Method sayMMethod = class_getInstanceMethod(self, @selector(sayMaster));
const char *type = method_getTypeEncoding(sayMMethod);
return class_addMethod(self, sel, imp, type);
}
return [super resolveInstanceMethod:sel];
}