本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,,版权归原作者所有,如有问题请及时联系我们以作处理
作者:yuanfangyijun 来源:CSDN
本文链接:https://blog.csdn.net/yuanfangyijun/article/details/111658030
1、 项目概述
1.1 项目目标和主要内容
迷宫游戏是非常经典的游戏,在该项目要求随机生成一个迷宫,并求解迷宫
1.2 项目的主要功能
随机生成迷宫并求解
2、 项目设计
2.1项目总体框架
通过 Prim 算法随机创建迷宫 通过深度优先算法求解迷宫
2.2 关键算法分析
prim算法:
算法思想:
*设N=(V,E)是连通网,TE是N上最小生成树中边的集合。
*初始令U={U0},(U0∈V),TE={ }。
*在所有u∈U,v∈V-U的边(u,v)∈E中,找一条代价最小的边(u0,v0).
*将(u0,v0)并入集合TE,同时v0并入U0.
*重复上述操作直至U=V为止,则T=(V.TE)为N的最小生成树。
3、设计步骤
3.1导入模块
import pyxel
import random
说明:
random库是随机生成库
pyxel库是一个用Python编写复古游戏的开发环境
3.2生成迷宫
采用 Prim 算法生成迷宫。
算法分析:
1、迷宫行和列必须为奇数。
2、奇数行和奇数列的交叉点为路,其余点为墙。迷宫四周全是墙。
3、选定一个为路的单元格(本例选 [1,1]),然后把它的邻墙放入列表 wall。
4、当列表 wall 里还有墙时:
. 4.1、从列表里随机选一面墙,如果这面墙分隔的两个单元格只有一个单元格被访问过
… 4.1.1、那就从列表里移除这面墙,同时把墙打通
… 4.1.2、将单元格标记为已访问
… 4.1.3、将未访问的单元格的的邻墙加入列表 wall
. 4.2、如果这面墙两面的单元格都已经被访问过,那就从列表里移除这面墙
定义一个 Maze 类,用二维数组表示迷宫地图,其中 1 表示墙壁,0 表示路,然后初始化左上角为入口,右下角为出口,最后定义下方向向量。
class Maze:
def __init__(self, width, height):
self.width = width
self.height = height
#行和列为偶数时设置为0,0表示路,1表示墙
self.map = [[0 if x % 2 == 1 and y % 2 == 1 else 1 for x in range(width)] for y in range(height)]
self.map[1][0] = 0 # 入口,第二行,第一列
self.map[height - 2][width - 1] = 0 # 出口
self.visited = []
# right up left down
self.dx = [1, 0, -1, 0]
self.dy = [0, -1, 0, 1]
def set_value(self, point, value):
self.map[point[1]][point[0]] = value
def get_value(self, point):
return self.map[point[1]][point[0]]
# 获取坐标(x,y)的邻居 返回数据结构为:二维数组
def get_neighbor(self, x, y, value):
res = []
for i in range(4):
if 0 < x + self.dx[i] < self.width - 1 and 0 < y + self.dy[i] < self.height - 1 and \
self.get_value([x + self.dx[i], y + self.dy[i]]) == value:
res.append([x + self.dx[i], y + self.dy[i]])
return res
# 获取坐标(x,y) 的邻墙
def get_neighbor_wall(self, point):
return self.get_neighbor(point[0], point[1], 1)
# 获取坐标(x,y) 的邻路
def get_neighbor_road(self, point):
return self.get_neighbor(point[0], point[1], 0)
def deal_with_not_visited(self, point, wall_position, wall_list):
if not [point[0], point[1]] in self.visited: #步骤4.1
self.set_value(wall_position, 0) #步骤4.1.1
self.visited.append(point) #步骤4.1.2
wall_list += self.get_neighbor_wall(point)#步骤4.1.3
def generate(self):
start = [1, 1]
self.visited.append(start)
wall_list = self.get_neighbor_wall(start) #步骤3
while wall_list: #步骤4
wall_position = random.choice(wall_list) #步骤4.1
neighbor_road = self.get_neighbor_road(wall_position)
wall_list.remove(wall_position)
self.deal_with_not_visited(neighbor_road[0], wall_position, wall_list)#进行4.1
self.deal_with_not_visited(neighbor_road[1], wall_position, wall_list)
def is_out_of_index(self, x, y):
return x == 0 or x == self.width - 1 or y == 0 or y == self.height - 1
3.3定义走迷宫函数
按照深度优先算法求解迷宫
def dfs(self, x, y, path, visited=[]):
# 越界
if self.is_out_of_index(x, y):
return False
# 访问过 or 撞墙
if [x, y] in visited or self.get_value([x, y]) == 1:
return False
visited.append([x, y])
path.append([x, y])
# over
if x == self.width - 2 and y == self.height - 2:
return True
# 递归过程
for i in range(4):
if 0 < x + self.dx[i] < self.width - 1 and 0 < y + self.dy[i] < self.height - 1 and \
self.get_value([x + self.dx[i], y + self.dy[i]]) == 0:
if self.dfs(x + self.dx[i], y + self.dy[i], path, visited):
return True
elif not self.is_out_of_index(x, y) and path[-1] != [x, y]:
path.append([x, y])
# dfs
def dfs_route(self):
path = []
self.dfs(1, 1, path)
ans = [[0, 1]]
for i in range(len(path)):
ans.append(path[i])
if 0 < i < len(path) - 1 and path[i - 1] == path[i + 1]:
ans.append(path[i])
ans.append([width - 1, height - 2])
return ans
# bfs
def bfs_route(self):
start = {'x': 0, 'y': 1, 'prev': None}
now = start
q = [start]
visited = [[start['x'], start['y']]]
# 1、从起点出发,获取起点周围所有连通的路
# 2、如果该路没有走过,则加入队列 Q,否则跳过 同时记录其前驱节点
while q:
now = q.pop(0)
# 结束
if now['x'] == self.width - 2 and now['y'] == self.height - 2:
break
roads = my_maze.get_neighbor_road([now['x'], now['y']])
for road in roads:
if not road in visited:
visited.append(road)
q.append({'x': road[0], 'y': road[1], 'prev': now})
ans = []
while now:
ans.insert(0, [now['x'], now['y']])
now = now['prev']
ans.append([width - 1, height - 2])
return ans
3.4可视化
调用python的pyxel库进行可视化
class App:
def __init__(self):
#pyxel.init(width * pixel, height * pixel, caption='maze', border_width=10, border_color=0xFFFFFF)
pyxel.init(width * pixel, height * pixel)
self.death = True
self.index = 0
self.route = []
self.step = 5 # 步长,数值越小速度越快,1:每次一格; 10:每次 1/10 格
self.color = start_point_color
self.bfs_route = my_maze.bfs_route()
self.dfs_route = my_maze.dfs_route()
self.dfs_model = True
pyxel.run(self.update, self.draw)
def update(self):
if pyxel.btn(pyxel.KEY_Q):
pyxel.quit()
if pyxel.btn(pyxel.KEY_S):
self.death = False
if not self.death:
self.check_death()
self.update_route()
def draw(self):
# draw maze
for x in range(height):
for y in range(width):
color = road_color if my_maze.map[x][y] is 0 else wall_color
pyxel.rect(y * pixel, x * pixel, pixel, pixel, color)
pyxel.rect(0, pixel, pixel, pixel, start_point_color)
pyxel.rect((width - 1) * pixel, (height - 2) * pixel, pixel, pixel, end_point_color)
if self.index > 0:
# draw route
offset = pixel / 2
for i in range(len(self.route) - 1):
curr = self.route[i]
next = self.route[i + 1]
self.color = backtrack_color if curr in self.route[:i] and next in self.route[:i] else route_color
pyxel.line(curr[0] + offset, (curr[1] + offset), next[0] + offset, next[1] + offset, self.color)
pyxel.circ(self.route[-1][0] + 2, self.route[-1][1] + 2, 1, head_color)
def check_death(self):
if self.dfs_model and len(self.route) == len(self.dfs_route) - 1:
self.death = True
elif not self.dfs_model and len(self.route) == len(self.bfs_route) - 1:
self.death = True
def update_route(self):
index = int(self.index / self.step)
self.index += 1
if index == len(self.route): # move
if self.dfs_model:
self.route.append([pixel * self.dfs_route[index][0], pixel * self.dfs_route[index][1]])
else:
self.route.append([pixel * self.bfs_route[index][0], pixel * self.bfs_route[index][1]])
App()
运行游戏,按s开始游戏