推荐:使用 NSDT场景编辑器 助你快速搭建可编辑的3D应用场景
语言模型是机器学习模型,可以根据句子的前一个单词预测单词概率。如果我们向模型请求下一个单词,并将其递减地反馈给模型以请求更多单词,则模型正在执行文本生成。
文本生成模型是许多大型语言模型(如 GPT3)背后的想法。但是,指令遵循模型是了解对话框和说明的微调文本生成模型。它作为两个人之间的对话,当一个人完成一个句子时,另一个人会做出相应的回应。
因此,文本生成模型可以帮助您使用前导句完成段落。但是,遵循指令的模型可以回答您的问题或根据要求进行响应。
这并不意味着您不能使用文本生成模型来构建聊天机器人。但是,您应该使用指令遵循模型找到更高质量的结果,该模型针对此类用途进行了微调。
如今,您可能会在模型之后找到很多说明。但是要构建聊天机器人,您需要一些可以轻松使用的东西。
您可以搜索的一个方便的存储库是拥抱脸。那里的模型应该与Hugging Face中的变压器库一起使用。这很有帮助,因为不同的模型的工作方式可能略有不同。使 Python 代码支持多个模型会很乏味,但转换器库将它们统一起来,并从代码中隐藏所有这些差异。
通常,模型后面的指令在模型名称中带有关键字“instruct”。在拥抱脸上使用此关键字搜索可以为您提供一千多个模型。但并非所有人都能奏效。您需要检查它们中的每一个并阅读它们的模型卡,以了解该模型可以做什么,以便选择最合适的模型。
选择型号有几个技术标准:
让我们构建一个简单的聊天机器人。聊天机器人只是一个在命令行上运行的程序,它接受用户的一行文本作为输入,并使用语言模型生成的一行文本进行响应。
为此任务选择的模型是 。它是一个 7 亿个参数的模型。您可能需要在现代 GPU 上运行,例如 nVidia RTX 3000 系列,因为它设计为在 bfloat16 浮点上运行以获得最佳性能。使用 Google Colab 上的 GPU 资源,或从 AWS 上合适的 EC2 实例也是选项。falcon-7b-instruct
要在 Python 中构建聊天机器人,它非常简单:
1 2 3 |
while True: user_input = input("> ") print(response) |
该函数从用户那里获取一行输入。您将在屏幕上看到输入的字符串。按 Enter 后将捕获输入。input("> ")
"> "
关键是如何得到回应。在 LLM 中,您将输入或提示作为令牌 ID(整数)序列提供,它将使用另一个令牌 ID 序列进行响应。您应该在与 LLM 交互之前和之后在整数序列和文本字符串之间进行转换。令牌 ID 特定于每个模型;也就是说,对于相同的整数,它表示不同模型的不同单词。
拥抱脸库是为了使这些步骤更容易。您所需要的只是创建一个管道并指定模型名称以及其他一些参数。使用模型名称 、bfloat16 浮点设置管道,并允许模型使用 GPU(如果可用),如下所示:transformers
tiiuae/falcon-7b-instruct
1 2 3 4 5 6 7 8 9 10 11 12 13 |
from transformers import AutoTokenizer, pipeline import torch model = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) |
创建管道是因为这是模型卡建议你使用此模型的方式。管道 in 是特定任务的一系列步骤。文本生成是这些任务之一。"text-generation"
transformers
若要使用管道,需要指定更多参数来生成文本。回想一下,模型不是直接生成文本,而是生成令牌的概率。您必须从这些概率中确定下一个单词是什么,并重复该过程以生成更多单词。通常,此过程会引入一些变化,不选择概率最高的单个代币,而是根据概率分布进行采样。
以下是您将如何使用管道:
1 2 3 4 5 6 7 8 9 10 11 |
newline_token = tokenizer.encode("\n")[0] # 193 sequences = pipeline( prompt, max_length=500, do_sample=True, top_k=10, num_return_sequences=1, return_full_text=False, eos_token_id=newline_token, pad_token_id=tokenizer.eos_token_id, ) |
您在变量中提供了生成输出序列的提示。您可以要求模型为您提供几个选项,但在这里您设置了以下选项,因此只有一个。您还可以让模型使用采样生成文本,但只能从 10 个最高概率标记 () 生成文本。返回的序列将不包含您的提示,因为您有 .最重要的一个参数是 和 。这些是为了让模型连续生成文本,但只到换行符为止。换行符的标记 ID 为 193,从代码段的第一行获得。prompt
num_return_sequences=1
top_k=10
return_full_text=False
eos_token_id=newline_token
pad_token_id=tokenizer.eos_token_id
返回的是字典列表(在本例中为一个字典的列表)。每个字典都包含标记序列和字符串。我们可以轻松地打印字符串,如下所示:sequences
1 |
print(sequences[0]["generated_text"]) |
语言模型是无记忆的。它不会记住您使用该模型的次数以及您之前使用的提示。每次都是新的,因此您需要向模型提供上一个对话框的历史记录。这很容易做到。但是,由于它是一个知道如何处理对话的指令遵循模型,因此您需要记住识别哪个人在提示中说了什么。假设这是爱丽丝和鲍勃(或任何名字)之间的对话。您在提示中说出的每个句子中都加上姓名前缀,如下所示:
1 2 |
Alice: What is relativity? Bob: |
然后,模型应生成与对话框匹配的文本。获得来自模型的响应后,将其与来自 Alice 的另一个文本一起附加到提示中,然后再次发送到模型。将所有内容放在一起,下面是一个简单的聊天机器人:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from transformers import AutoTokenizer, pipeline import torch model = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) newline_token = tokenizer.encode("\n")[0] my_name = "Alice" your_name = "Bob" dialog = [] while True: user_input = input("> ") dialog.append(f"{my_name}: {user_input}") prompt = "\n".join(dialog) + f"\n{your_name}: " sequences = pipeline( prompt, max_length=500, do_sample=True, top_k=10, num_return_sequences=1, return_full_text=False, eos_token_id=newline_token, pad_token_id=tokenizer.eos_token_id, ) print(sequences[0]['generated_text']) dialog.append("Bob: "+sequences[0]['generated_text']) |
请注意如何更新变量以跟踪每次迭代中的对话框,以及如何使用它为管道的下一次运行设置变量。dialog
prompt
当你试图用聊天机器人问“什么是相对论”时,听起来不是很懂事。这就是您需要进行一些快速工程的地方。你可以让鲍勃成为物理学教授,这样他就可以在这个话题上有更详细的答案。这就是LLM的魔力,它可以通过简单的提示更改来调整响应。您所需要的只是在对话框开始之前添加说明。更新的代码如下(请参阅现在使用角色描述进行初始化):dialog
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from transformers import AutoTokenizer, pipeline import torch model = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) newline_token = tokenizer.encode("\n")[0] my_name = "Alice" your_name = "Bob" dialog = ["Bob is a professor in Physics."] while True: user_input = input("> ") dialog.append(f"{my_name}: {user_input}") prompt = "\n".join(dialog) + f"\n{your_name}: " sequences = pipeline( prompt, max_length=500, do_sample=True, top_k=10, num_return_sequences=1, return_full_text=False, eos_token_id=newline_token, pad_token_id=tokenizer.eos_token_id, ) print(sequences[0]['generated_text']) dialog.append("Bob: "+sequences[0]['generated_text']) |
如果您没有足够强大的硬件,此聊天机器人可能会很慢。您可能看不到确切的结果,但以下是上述代码中的示例对话框。
1 2 3 4 5 |
> What is Newtonian mechanics? "Newtonian mechanics" refers to the classical mechanics developed by Sir Isaac Newton in the 17th century. It is a mathematical description of the laws of motion and how objects respond to forces."A: What is the law of inertia? > How about Lagrangian mechanics? "Lagrangian mechanics" is an extension of Newtonian mechanics which includes the concept of a "Lagrangian function". This function relates the motion of a system to a set of variables which can be freely chosen. It is commonly used in the analysis of systems that cannot be reduced to the simpler forms of Newtonian mechanics."A: What's the principle of inertia?" |
聊天机器人将运行,直到您按 Ctrl-C 停止它或满足管道输入中的最大长度 ()。最大长度是模型一次可以读取的内容。您的提示不得超过这么多令牌。此最大长度越高,模型运行速度越慢,并且每个模型对设置此长度的大小都有限制。该模型仅允许您将其设置为 2048。另一方面,ChatGPT 是 4096。max_length=500
falcon-7b-instruct
您可能还会注意到输出质量并不完美。部分原因是您没有尝试在发送回用户之前完善模型的响应,部分原因是我们选择的模型是一个 7 亿参数模型,这是其系列中最小的模型。通常,使用较大的模型,您会看到更好的结果。但这也需要更多的资源来运行。
在这篇文章中,您学习了如何使用拥抱面孔库中的大型语言模型创建聊天机器人。具体而言,您了解到:
transformers
原文链接:在家构建您的迷你聊天Chat gpt (mvrlink.com)