七大查找算法

   参考博文:https://blog.csdn.net/weixin_39241397/article/details/79344179

  • 1. 顺序查找
  • 2. 二分查找
  • 3. 插值查找
  • 4. 斐波那契查找
  • 5. 树表查找
  • 6. 分块查找
  • 7. 哈希查找

查找是在大量的信息中寻找一个特定的信息元素,在计算机应用中,查找是常用的基本运算,例如编译程序中符号表的查找。本文简单概括性的介绍了常见的七种查找算法,说是七种,其实二分查找、插值查找以及斐波那契查找都可以归为一类——插值查找。插值查找和斐波那契查找是在二分查找的基础上的优化查找算法。树表查找和哈希查找会在后续的博文中进行详细介绍。

    查找定义:根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录)。

查找算法分类:

     1)静态查找和动态查找;

    注:静态或者动态都是针对查找表而言的。动态表指查找表中有删除和插入操作的表。

  2)无序查找和有序查找。

    无序查找:被查找数列有序无序均可;

    有序查找:被查找数列必须为有序数列。

 

平均查找长度(Average Search Length,ASL):需和指定key进行比较的关键字的个数的期望值,称为查找算法在查找成功时的平均查找长度。

  对于含有n个数据元素的查找表,查找成功的平均查找长度为:ASL = Pi*Ci的和。
  Pi:查找表中第i个数据元素的概率。
  Ci:找到第i个数据元素时已经比较过的次数。

1. 顺序查找

        说明:顺序查找适合于存储结构为顺序存储或链接存储的线性表。

基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。

复杂度分析: 

  查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
  当查找不成功时,需要n+1次比较,时间复杂度为O(n);

  所以,顺序查找的时间复杂度为O(n)。

 C++实现源码:

 
  1. //顺序查找

  2. int SequenceSearch(int a[], int value, int n)

  3. {

  4. int i;

  5. for(i=0; i

  6. if(a[i]==value)

  7. return i;

  8. return -1;

  9. }

  java实现源码:
 

 
  1. public class sequence{

  2. public static  boolean SequenceSearch(int a[],int k,int value){

  3. for( int i = 0 ; i

  4. if( value == a[i])

  5. return true;

  6. else

  7. return false;

  8. }

  9. return false;

  10. }

  11. public static void main(String[] args) {

  12. int[] a = {8,2,4,5,3,10,11,6,9};

  13. System.out.println(SequenceSearch(a,a.length,20));

  14. }

  15. }

  16. //printf: false

2. 二分查找

 说明:元素必须是有序的,如果是无序的则要先进行排序操作。

  基本思想:也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。

  复杂度分析:最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n);

  注:折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。——《大话数据结构》

C++实现源码:

 
  1. //二分查找(折半查找),版本1

  2. int BinarySearch1(int a[], int value, int n)

  3. {

  4. int low, high, mid;

  5. low = 0;

  6. high = n-1;

  7. while(low<=high)

  8. {

  9. mid = (low+high)/2;

  10. if(a[mid]==value)

  11. return mid;

  12. if(a[mid]>value)

  13. high = mid-1;

  14. if(a[mid]

  15. low = mid+1;

  16. }

  17. return -1;

  18. }

  19.  
  20. //二分查找,递归版本

  21. int BinarySearch2(int a[], int value, int low, int high)

  22. {

  23. int mid = low+(high-low)/2;

  24. if(a[mid]==value)

  25. return mid;

  26. if(a[mid]>value)

  27. return BinarySearch2(a, value, low, mid-1);

  28. if(a[mid]

  29. return BinarySearch2(a, value, mid+1, high);

  30. }

java 实现源码:

 
  1. /*1.*/

  2. public class BinarySearch1{

  3.  
  4. public static int binarysearch(int[] a,int n,int value){

  5. int low = 0;

  6. int high = n - 1;

  7. int mid;

  8. while(low < high){

  9. mid = (low + high)/2;

  10. if(value < a[mid])

  11. high = mid - 1;

  12. if(value > a[mid])

  13. low = mid + 1;

  14. if(value == a[mid])

  15. return mid;

  16. }

  17. return -1;

  18. }

  19. public static void main(String[] args) {

  20. //int[] a = {1,4,2,9,8,6,7,0,3,5}

  21. int[] a = {0,1,2,3,4,5,6,7,8,9};

  22. System.out.println(binarysearch(a,a.length,7));

  23. }

 
  1. /*2.recursive algorithm */

  2. public class BinarySearch2{

  3.  
  4. public static int binarysearch(int[] a,int value,int low,int high){

  5. int mid = (low + high)/2;

  6. if(value == a[mid])

  7. return mid;

  8. mid = (low + high)/2;

  9. if(value < a[mid])

  10. return binarysearch(a,value,low,mid - 1);

  11. if(value > a[mid])

  12. return binarysearch(a,value,mid + 1,high);

  13. return -1;

  14. }

  15. public static void main(String[] args) {

  16. //int[] a = {1,4,2,9,8,6,7,0,3,5}

  17. int[] a = {0,1,2,3,4,5,6,7,8,9};

  18. System.out.println(binarysearch(a,4,0,a.length-1));

  19. }

  20. }

3. 插值查找

  在介绍插值查找之前,首先考虑一个新问题,为什么上述算法一定要是折半,而不是折四分之一或者折更多呢?

  打个比方,在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。

  同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。

  经过以上分析,折半查找这种查找方式,不是自适应的(也就是说是傻瓜式的)。二分查找中查找点计算如下:

  mid=(low+high)/2, 即mid=low+1/2*(high-low);

  通过类比,我们可以将查找的点改进为如下:

  mid=low+(key-a[low])/(a[high]-a[low])*(high-low),

  也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

  基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

  注:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

  复杂度分析:查找成功或者失败的时间复杂度均为O(log2(log2n))。

java代码实现:

 
  1. public class InsertionSearch{

  2. public static int InsertionSearch(int[] a, int value, int low, int high)

  3. {

  4. int mid = low+(value-a[low])/(a[high]-a[low])*(high-low);

  5. if(a[mid]==value)

  6. return mid;

  7. if(a[mid]>value)

  8. return InsertionSearch(a, value, low, mid-1);

  9. if(a[mid]

  10. return InsertionSearch(a, value, mid+1, high);

  11. return -1;

  12. }

  13. public static void main(String[] args) {

  14. int[] a = {0,1,2,3,4,5,6,7,8,9};

  15. System.out.println(InsertionSearch(a,2,0,a.length-1));

  16. }

  17. }

 

4. 斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

  黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

  0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

  大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)。然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

  基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

  相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:

   1)相等,mid位置的元素即为所求

   2)>,low=mid+1;

        3)<,high=mid-1。

  斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;

 开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种

  1)相等,mid位置的元素即为所求

  2)>,low=mid+1,k-=2;

      说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

  3)<,high=mid-1,k-=1。

      说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。

  复杂度分析:最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。

5. 树表查找

  5.1 最简单的树表查找算法——二叉树查找算法。

  基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。 

  二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree)或者是一棵空树,或者是具有下列性质的二叉树:

  1)若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

  2)若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

  3)任意节点的左、右子树也分别为二叉查找树。

  二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。

        不同形态的二叉查找树如下图所示:

 

复杂度分析:它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡(比如,我们查找上图(b)中的“93”,我们需要进行n次查找操作)。我们追求的是在最坏的情况下仍然有较好的时间复杂度,这就是平衡查找树设计的初衷。

  下图为二叉树查找和顺序查找以及二分查找性能的对比图:

 

  基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法

5.2 平衡查找树之2-3查找树(2-3 Tree)

  2-3查找树定义:和二叉树不一样,2-3树运行每个节点保存1个或者两个的值。对于普通的2节点(2-node),他保存1个key和左右两个自己点。对应3节点(3-node),保存两个Key,2-3查找树的定义如下:

  1)要么为空,要么:

  2)对于2节点,该节点保存一个key及对应value,以及两个指向左右节点的节点,左节点也是一个2-3节点,所有的值都比key要小,右节点也是一个2-3节点,所有的值比key要大。

  3)对于3节点,该节点保存两个key及对应value,以及三个指向左中右的节点。左节点也是一个2-3节点,所有的值均比两个key中的最小的key还要小;中间节点也是一个2-3节点,中间节点的key值在两个跟节点key值之间;右节点也是一个2-3节点,节点的所有key值比两个key中的最大的key还要大。

Definition of 2-3 tree

2-3查找树的性质:

  1)如果中序遍历2-3查找树,就可以得到排好序的序列;

  2)在一个完全平衡的2-3查找树中,根节点到每一个为空节点的距离都相同。(这也是平衡树中“平衡”一词的概念,根节点到叶节点的最长距离对应于查找算法的最坏情况,而平衡树中根节点到叶节点的距离都一样,最坏情况也具有对数复杂度。)

  性质2)如下图所示:

 

复杂度分析:

  2-3树的查找效率与树的高度是息息相关的。

  • 在最坏的情况下,也就是所有的节点都是2-node节点,查找效率为lgN
  • 在最好的情况下,所有的节点都是3-node节点,查找效率为log3N约等于0.631lgN

  距离来说,对于1百万个节点的2-3树,树的高度为12-20之间,对于10亿个节点的2-3树,树的高度为18-30之间。

  对于插入来说,只需要常数次操作即可完成,因为他只需要修改与该节点关联的节点即可,不需要检查其他节点,所以效率和查找类似。下面是2-3查找树的效率:

analysis of 2-3 tree

 

5.3 平衡查找树之红黑树(Red-Black Tree)

  2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgn,从而保证了最坏情况下的时间复杂度。但是2-3树实现起来比较复杂,于是就有了一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree)。

  基本思想:红黑树的思想就是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息。红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个3-nodes节点。黑色链接用来链接普通的2-3节点。特别的,使用红色链接的两个2-nodes来表示一个3-nodes节点,并且向左倾斜,即一个2-node是另一个2-node的左子节点。这种做法的好处是查找的时候不用做任何修改,和普通的二叉查找树相同。

 

Red black tree

 

  红黑树的定义:

  红黑树是一种具有红色和黑色链接的平衡查找树,同时满足:

  • 红色节点向左倾斜
  • 一个节点不可能有两个红色链接
  • 整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同。

  下图可以看到红黑树其实是2-3树的另外一种表现形式:如果我们将红色的连线水平绘制,那么他链接的两个2-node节点就是2-3树中的一个3-node节点了。

1-1 correspondence between 2-3 and LLRB

 

红黑树的性质:整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同(2-3树的第2)性质,从根节点到叶子节点的距离都相等)。咋·    

  复杂度分析:最坏的情况就是,红黑树中除了最左侧路径全部是由3-node节点组成,即红黑相间的路径长度是全黑路径长度的2倍。

  下图是一个典型的红黑树,从中可以看到最长的路径(红黑相间的路径)是最短路径的2倍:

a typic red black tree

  红黑树的平均高度大约为logn。

  下图是红黑树在各种情况下的时间复杂度,可以看出红黑树是2-3查找树的一种实现,它能保证最坏情况下仍然具有对数的时间复杂度。

  红黑树这种数据结构应用十分广泛,在多种编程语言中被用作符号表的实现,如:

  • Java中的java.util.TreeMap,java.util.TreeSet;
  • C++ STL中的:map,multimap,multiset;
  • .NET中的:SortedDictionary,SortedSet等。

 

 

待续....2018/02/26

 

参考文献:http://www.cnblogs.com/maybe2030/p/4715035.html#_labelTop

你可能感兴趣的:(软开,查找算法)