图像处理之拉普拉斯算子的详细推导过程

看了好多帖子,都没有详细简明的推导过程,所以在这里写一下(前提了解导数的极限定义和图像的结构):

  • 拉普拉斯算子定义:
    \bigtriangledown^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}

  • f(x,y)对x右侧的一阶偏导(因为相邻点像素距离差为1,所以分母为1略去):
    \frac{\partial f}{\partial x} = f(x+1,y) - f(x,y)

  • f(x,y)对x左侧的一阶偏导(同上):
    \frac{\partial f}{\partial x} = f(x,y) - f(x-1,y)

  • f(x,y)对x的二阶偏导(右侧一阶减左侧一阶,分母仍然是1略去):
    \begin{aligned} \frac{\partial^2 f}{\partial x^2} &= f(x+1,y) - f(x,y) - (f(x,y) - f(x-1,y)) \\ &= f(x+1,y) + f(x-1,y) - 2f(x,y) \end{aligned}

  • f(x,y)对y的二阶偏导(同上):
    \begin{aligned} \frac{\partial^2 f}{\partial y^2} &= f(x,y+1) - f(x,y) - (f(x,y) - f(x,y-1)) \\ &= f(x,y+1) + f(x,y-1) - 2f(x,y) \end{aligned}

  • 上面两式相加得到结果:
    \begin{aligned} \bigtriangledown^2 f &= f(x+1,y) + f(x-1,y) - 2f(x,y) + f(x,y+1) + f(x,y-1) - 2f(x,y) \\ &= (f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)) - 4f(x,y) \end{aligned}

然后按照结果中每个点的权值变成卷积核:

0 1 (f(x,y-1)的权值) 0
1 (f(x-1,y)的权值) -4 (f(x,y)的权值) 1 (f(x+1,y)的权值)
0 1 (f(x,y+1)的权值) 0

你可能感兴趣的:(图像处理之拉普拉斯算子的详细推导过程)