- 嵌入式学习笔记-卡尔曼滤波,PID,MicroPython
tt555555555555
面经嵌入式学习笔记学习笔记嵌入式
文章目录卡尔曼滤波卡尔曼滤波的核心思想卡尔曼滤波的数学模型1.状态转移模型(预测系统状态)2.观测模型(预测测量值)卡尔曼滤波的五个关键步骤1.预测状态2.预测误差协方差3.计算卡尔曼增益4.更新状态5.更新误差协方差卡尔曼滤波算法步骤总结代码实现(Python示例)PID调节总结MicroPython示例代码:控制LED灯并连接WiFi1.硬件准备2.连接方式3.示例代码代码说明开发环境搭建今天
- 大模型算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
介绍:大模型算法工程师是指在开发和部署复杂的机器学习模型、深度学习模型或其他大规模模型的专业人员。他们的主要职责和技能要求包括:职责:设计、开发和优化大规模机器学习或深度学习模型,解决复杂的业务问题。负责整个模型开发生命周期,包括数据清洗、特征工程、模型选择、训练和部署。与数据科学家、工程团队和产品团队合作,理解业务需求并将算法转化为实际产品。对模型性能进行评估和优化,确保模型的准确性、效率和可扩
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- AI大模型知识图谱和学习路线!
hhaiming_
人工智能知识图谱学习
23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的知识图谱和学习路线就变得非常重要!一、大模型全套的学习路线学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳
- SpringBoot配置文件的优先级(保姆级超详细讲解)
来杯@Java
springbootpython后端
文章目录配置优先级排序项目外部配置文件项目内部配置文件Bootstrap配置文件配置优先级排序命令行参数;java:comp/env的JNDI属性(当前J2EE应用的环境);JAVA系统的环境属性;操作系统的环境变量;JAR包外部的application-xxx.properties或application-xxx.yml配置文件;JAR包内部的application-xxx.properties
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- 深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
@Mr_LiuYang
计算机视觉基础归一化正则化NormlizationBatchNormLayerNormInstanceNromGroupNorm
深度学习pytorch之22种损失函数数学公式和代码定义深度学习pytorch之19种优化算法(optimizer)解析深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用摘要归一化(Normalization)是提升模型性能、加速训练的重要技巧。归一化方法可以帮助减少梯度消失或爆炸的问题,提升模型的收敛速度,且对最终模型的性能有显著影响。本文将以PyTorc
- 通俗易懂的分类算法之决策树详解
clownAdam
分类决策树数据挖掘算法
通俗易懂的分类算法之决策树详解1.什么是决策树?决策树是一种像树一样的结构,用来帮助我们对数据进行分类或预测。它的每个节点代表一个问题或判断条件,每个分支代表一个可能的答案,最后的叶子节点就是最终的分类结果。举个例子:假设你要判断一个水果是苹果还是香蕉,你可以问一些问题:它是红色的吗?如果是→可能是苹果。如果不是→继续问下一个问题。它是长条形的吗?如果是→可能是香蕉。如果不是→可能是其他水果。这个
- C#在线支付系统大揭秘:3步搞定多币种支持,轻松超越竞争对手?
墨瑾轩
C#乐园c#microsoft开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在当今全球化的商业环境中,在线支付系统的多币种支持变得越来越重要。无论是跨境电商还是国际服务提供商,能够处理多种货币的交易都是提升用户体验、扩大市场份额的关键因素之一。那么,在C#中如何实现一个具备多币种支持的在线支付系统呢?今天,我们就来深入探讨这个问题,并
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例
Mostcow
Python数据分析机器学习scikit-learn随机森林回归算法
机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):随机森林是一种集成学习方法,它通过构建多个决策树来进行预测。它对于处理大量特征、非线性关系和避免过拟合都有一定的优势。在Python中,你可以使用Scikit-learn库中的RandomForestRegressor来实现。随机森林回归作为
- 【2025年超全汇总】大模型常见面试题及详细答案解析(非常详细)收藏这一篇就够了!
Cc不爱吃洋葱
人工智能大语言模型语言模型LLM大模型大模型面试大模型算法
大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:请简述什么是大模型,以及它与传统模型的主要区别是什么?回答:大模型通常指的是参数数量巨大的深度学习模型,如GPT系列。它们与传统模型的主要区别在于规模:大模型拥有更多的参数和更复杂的结构,从而能够处理更复杂、更广泛的任务。此外,大模型通常需要更多的数据和计算资源进行
- 清华「DeepSeek从入门到精通」正式发布!104页超全解析使用教程
职场程序猿
deepseekai
看了这么多deepseek使用指导,包括什么使用指南,15天指导手册,还有一些自媒体账号写的使用方法,普遍的问题是十分粗糙,没有实际的指导意义。还有些用的是chatGPT的训练方式,要知道,DeepSeek和chatGPT是两种模型,一个是推理型,一个是指令型,这是驴唇不对马嘴啊。虽然deepseek官方也提供了提示库文档,进行了13种场景的分类,但是具体举例也不够详细。有需要可以自取:「Deep
- 数据挖掘与数据分析的区别是什么
中琛源科技
数据挖掘与数据分析两者紧密相连,具有循环递归的关系,数据分析结果需要进一步进行数据挖掘才能指导决策,而数据挖掘进行价值评估的过程也需要调整先验约束而再次进行数据分析。从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于机器对未来的预测,一般应用于分类、聚类、推荐、关联规则等。从分析的过程来看,数据分析更侧重于统计学上面的一些方法,经过人的推理演译得到结论;数据挖掘更侧
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- 2025年电商运营进阶的2项核心能力:算法理解力与生态整合力
2025电商运营进阶指南:从“流量焦虑”到“全域增长”的破局之道——AI与短视频红利下,如何抓住新赛道实现指数级跃迁?2025年,电商人的“生死时速”与突围机遇[]()“流量越来越贵,ROI越来越低,用户越来越难伺候!”——这是2025年电商行业最真实的写照。据《2025中国电商生态白皮书》显示,超60%的中小商家因运营模式僵化陷入增长瓶颈,而头部玩家却通过AI驱动、全域营销、精细化运营实现逆势增
- DeepSeek 1.5B 蒸馏模型的征程 6 部署(Llama 方式)
自动驾驶算法
前言DeepSeek是一款基于人工智能的搜索引擎,旨在提升用户的搜索体验。它利用先进的自然语言处理技术,通过理解查询的上下文和意图,为用户提供更精确、相关的搜索结果。与传统的搜索引擎不同,DeepSeek不仅仅依赖于关键词匹配,还能通过深度学习分析用户的需求,呈现更加智能化的搜索结果。此外,DeepSeek还具备语义理解能力,能够处理复杂的查询,并在短时间内给出最符合用户需求的答案。DeepSee
- 【数学建模】基于matlab模拟无人车泊车问题仿真
matlab科研助手
数学建模matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍无人驾驶汽车技术近年来取得了飞速发展,其中自动泊车功能是关键技术之一。本文将重点讨论无
- AI大语言模型概述:从GPT到BERT的技术演进
AI智能涌现深度研究
AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是大语言模型大语言模型是一种基于深度学习的自然语言处理技术,它可以理解和生成人类语言。这些模型通过学习大量的文本数据,捕捉到语言的语法、语义和情感等信息,从而实现对自然语言的理解和生成。1.2为什么大语言模型如此重要大语言模型在近年来取得了显著的进展,它们在各种自然语言处理任务中都取得了最先进的性能。这些任务包括机器翻译、情感分析、文本摘要、问答系统等。大语言模型的成功在很大
- 图像分类项目 2.28
不要不开心了
人工智能机器学习数据挖掘python深度学习
今天的内容是图像分类项目一.图像分类将不同的图像,划分到不同的类别标签,实现最小的分类误差。图像分类的三层境界1.通用的多类别图像分类2.子类细粒度图像分类3.实例级图片分类二.图像分类评估指标TP(Truepositive,真正例):将正类预测为正类数。FP(Falsepositive,假正例):将反类预测为正类数。TN(Truenegative,真反例):将反类预测为反类数。FN(Falsen
- 数学建模:MATLAB极限学习机解决回归问题
DesolateGIS
数学建模数学建模matlab开发语言
一、简述极限学习机是一种用于训练单隐层前馈神经网络的算法,由输入层、隐藏层、输出层组成。基本原理:输入层接受传入的样本数据。在训练过程中随机生成从输入层到隐藏层的所有连接权重以及每个隐藏层神经元的偏置值,这些参数在整个训练过程中不会被修改。前向传播:输入数据通过已设定的权重和偏置传递给隐藏层,经过激活函数处理后产生隐藏层的输出。在得到隐藏层输出后,需找到从隐藏层到输出层的最佳权重。隐藏层到输出层的
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- Opencv Canny边缘检测
noruta
Opencvpythonopencv人工智能计算机视觉
边缘检测的目的是找到灰度值的突变步骤:使用高斯滤波,以平滑图像、滤除噪声计算图像中每个像素点的梯度强度和方向应用非极大值预测,以消除边缘检测的杂散响应应用双阈值检测来确定真实的和潜在的边缘通过抑制孤立的弱边缘最终完成边缘检测5.1高斯滤波器H=[0.09240.11920.09240.11920.15380.11920.09240.11920.0924]H=\begin{bmatrix}0.092
- 神经架构搜索 原理与代码实例讲解
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
神经架构搜索:原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习的快速发展,神经网络在各个领域取得了显著的成果。然而,设计一个高效、通用的神经网络架构仍然是一个具有挑战性的问题。手动设计网络架构需要大量的专业知识和经验,而且往往效率低下。因此,神经架构搜索(NeuralArchitectureS
- DeepSeek理论利润率高达545%;谷歌联合创始人布林要求员工每周工作60小时;曝域名ai.com要价1亿美元|极客头条
极客日报
人工智能
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!字节商业化迎来新调整:仅保留技术中台,千川划归电商智谱完成一笔金额超10亿元人民币的战略融资,杭州国资参投荣耀新任CEO李健首次公开亮相,未来5年将投入100亿美元建设AI设备生态DeepSeek大胆披露:
- 筑牢数据安全防线,SSL 证书为企业数字化护航
ssl证书ssl
在2025年,随着《数据安全法》修订版正式落地实施,企业数据加密与身份验证已然成为合规经营的刚性需求。权威数据表明,未部署HTTPS的网站因安全警告,用户流失率高达32%;而采用企业级SSL证书的电商平台,交易转化率提升超20%。在此严峻形势下,JoySSL凭借极具性价比的付费证书服务,脱颖而出,成为中小企业实现安全升级的优质选择。付费SSL证书,企业安全的坚实护盾免费证书虽能实现基础加密,但仅仅
- 【实战篇】DeepSeek + Cline 编程实战:从入门到“上头”
再见孙悟空_
【2025AI学习从零单排系列】【2025AI工具合集】DeepSeek+clineDeepSeekdeepseekclinedeepseek编程AI编程
嘿,小伙伴们!今天咱们来好好唠唠这个超火的组合——DeepSeek+Cline,看看它们在编程实战里到底能发挥多大的威力。要是你还在为写代码时的各种问题烦恼,那这篇文章绝对能帮到你!一、初识DeepSeek和ClineDeepSeek是啥?DeepSeek是杭州深度求索公司开发的一系列人工智能模型,特别擅长知识类任务。它能干的事儿可多了,像自然语言处理、代码生成、数据分析这些都不在话下。而且,De
- Android Bitmap详解
同名公众号 - 人生代码
AndroidBitmap详解安卓开发AndroidBitmap详解
一、基本信息Bitmap位图包括像素以及长、宽、颜色等描述信息。长宽和像素位数是用来描述图片的,可以通过这些信息计算出图片的像素占用内存的大小。位图可以理解为一个画架,把图放到上面然后可以对图片做一些列的处理。位图文件图像显示效果好,但是非压缩格式,需要占用较大的存储空间。1.Config:表示图片像素类型,包括ALPHA_8、RGB_565、ARGB_4444、ARGB_8888A:透明度;RG
- 智能教育:DeepSeek在个性化学习中的创新应用
Evaporator Core
#DeepSeek快速入门系统架构设计师DeepSeek进阶开发与应用聚类数据挖掘机器学习
教育是塑造未来的基石,而个性化学习则是现代教育的重要趋势。随着人工智能技术的飞速发展,教育领域正迎来一场深刻的变革。DeepSeek作为人工智能领域的领军者,正在通过其强大的技术能力,推动个性化学习的创新应用。一、个性化学习路径:从数据到洞察个性化学习的核心在于根据学生的学习数据,生成定制化的学习路径。DeepSeek通过深度学习算法,能够从海量的学习数据中提取关键信息,生成更加精准的学习建议。f
- NLP自然语言处理:文本表示总结 - 上篇word embedding(基于降维、基于聚类、CBOW 、Skip-gram、 NNLM 、TF-ID、GloVe )
陈宸-研究僧
NLP自然语言处理
文本表示分类(基于表示方法)离散表示one-hot表示词袋模型与TF-ID分布式表示基于矩阵的表示方法降维的方法聚类的方法基于神经网络的表示方法NNLMCBOWSkip-gramGloVeELMoGPTBERT目录一、文本离散表示1.1文本离散表示:one-hot1.2文本离散表示:词袋模型与TF-IDF1.2.1词袋模型(bagofwords)1.2.2对词袋模型的改进:TF-IDF二、文本分布
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。