自定义一个适合游戏的定时任务框架

定时任务框架的实现

前言

基本上每个语言都有自己的定时任务实现方式,为什么我们还需要自己封装一个呢?主要是现在的定时任务框架还是不够满足我们的需求,那我们要的定时框架有哪些需求呢?

  • 完善的日志支持
    • 任务添加的日志
    • 任务执行的日志(包含执行时间,是否出错等信息)
    • 任务取消的日志
  • 任务被多线程执行,提高执行效率
  • 对系统时间的调整敏感

我们发现没有一个定时系统能够满足这些需求,所以我们就封装了一个。

实现思路


Untitled.png
  • 这个实现思路任务是有一定的执行延迟,最大的延迟的是等待的最小时间间隔
  • 需要有一个高效的数据结构存储任务队列,能够快速获取最近需要执行的任务
  • 线程池的数量可定义,或者交给系统的线程池执行
  • 自定义的系统可以方便在需要的地方记录日志

一、任务类的封装

对于在系统中可以执行的定时任务,我们进行了一些基础的封装,定义了一个定时任务的基本要求,也方便定时系统的统一调度

  • 定时任务都会分配一个全局的任务Id
  • 定时任务必须指定一个名称
  • 定时任务必须指定执行时间
  • 定时任务实现IComparable ,可以比较进行排序
public class SimpleTimerTask : IComparable
{
    /// 
    /// 任务Id自增
    /// 
    protected static int Id;

    /// 
    /// 任务名称
    /// 
    public string Name { get; private set; }

    /// 
    /// 执行时间
    /// 
    public long ExecutionTime { get; private set; }

    /// 
    /// 任务Id
    /// 
    public int TaskId { get; private set; }

    /// 
    /// 任务取消标志
    /// 
    private volatile bool cancelled;

    /// 
    /// 任务执行标志
    /// 
    private volatile bool executed;

    /// 
    /// 任务执行器
    /// 
    protected Action _action;

    public SimpleTimerTask(string name, long executionTime)
    {
        Name = name;
        ExecutionTime = executionTime;
        TaskId = NextId();
    }

    public SimpleTimerTask(string name, long executionTime, Action action)
    {
        Name = name;
        ExecutionTime = executionTime;
        TaskId = NextId();
        _action = action;

    }

    public bool Cancel()
    {
        if (executed)
        {
            return false;
        }

        cancelled = true;
        return true;
    }

    internal bool CanExecute()
    {
        if (cancelled)
        {
            return false;
        }

        executed = true;
        return true;
    }

    internal Action GetTask() => _action;

    private int NextId()
    {
        return Interlocked.Increment(ref Id);
    }

    public int CompareTo(SimpleTimerTask? other)
    {
        if (null == other)
        {
            return 1;
        }

        return (int)(ExecutionTime - other.ExecutionTime);
    }
}

二、高效的任务队列

如果这套定时系统要高效的运行,一定要找到一个高效存储任务的数据结构。按照系统需求我们发现最小堆 是最适合的数据结构,它有以下优势:

  • 有序插入的复杂度是O(nlogn)
  • 获取最近的需要执行的定时任务是O(1)
  • 最小堆基于数组实现,访问效率高

一般各大编程语言的SDK都提供了优先队列的实现,可惜C# 没有提供,这里提供一个类似JDK优先队列的实现

public class PriorityQueue : IEnumerable
{
    /// 
    /// 默认最小堆容量
    /// 
    private const int DEFAULT_INITIAL_CAPACITY = 11;

    /// 
    /// 内部数组
    /// 
    private T[] _array;

    /// 
    /// 最小堆的大小
    /// 
    public int Count { get; set; }

    /// 
    /// 比较器
    /// 
    private readonly IComparer _comparer;

    /// 
    /// 版本号
    /// 
    private int _version;

    public PriorityQueue() : this (DEFAULT_INITIAL_CAPACITY)
    {
    }

    public PriorityQueue(int capacity) : this (capacity, Comparer.Default)
    {
    }

    public PriorityQueue(int capacity, IComparer comparer)
    {
        if (capacity < 1)
        {
            throw new ArgumentException($"{nameof(capacity)} must greater than one");
        }

        _array = new T[capacity];
        _comparer = comparer;
    }

    /// 
    /// 将元素压入堆
    /// 
    /// 
    /// 
    public void Enqueue(T item)
    {
        if (item == null)
        {
            throw new ArgumentException("item can't be null");
        }

        var i = Count;
        if (i >= _array.Length)
        {
            GrowCapacity(i + 1);
        }

        _version++;
        SiftUp(i, item);
        Count += 1;
    }

    /// 
    /// 取最小堆堆顶
    /// 
    /// 
    public T Dequeue()
    {
        return TryDequeue(out var result) ? result : default;
    }

    /// 
    /// 取最小堆堆顶
    /// 
    /// 
    /// 
    public bool TryDequeue([MaybeNullWhen(false)] out T result)
    {
        if (Count == 0)
        {
            result = default;
            return false;
        }

        _version++;
        var s = --Count; // 最后一个元素位置
        result = _array[0]; // 取堆顶
        var x = _array[s]; // 获取当前堆的最后一个元素
        _array[s] = default; // 最后位置置空
        if (s != 0)
        {
            SiftDown(0, x); // 当前堆的最后一个元素下沉
        }

        return true;
    }

    /// 
    /// 查看最小堆对顶
    /// 
    /// 
    public T Peek()
    {
        return TryPeek(out var result) ? result : default;
    }

    /// 
    /// 尝试查看最小堆堆顶
    /// 
    /// 
    /// 
    public bool TryPeek([MaybeNullWhen(false)] out T result)
    {
        if (Count == 0)
        {
            result = default;
            return false;
        }

        result = _array[0];
        return true;
    }

    /// 
    /// 上浮
    /// 
    /// 
    /// 
    /// 
    private void SiftUp(int k, T x)
    {
        while (k > 0)
        {
            var parent = (k - 1) >> 1; //  k / 2
            var e = _array[parent];
            if (_comparer.Compare(x, e) >= 0)
            {
                break;
            }

            _array[k] = e;
            k = parent;
        }

        _array[k] = x;
    }

    /// 
    /// 下沉
    /// 
    /// 
    /// 
    private void SiftDown(int k, T x)
    {
        var half = Count >> 1;
        while (k < half)
        {
            var child = (k << 1) + 1; // left child
            var c = _array[child];
            var right = child + 1; // right child
            if (right < Count && _comparer.Compare(c, _array[right]) > 0)
            {
                // 左节点大于右节点,取右节点
                c = _array[right];
                child = right;
            }

            if (_comparer.Compare(x, c) <= 0)
            {
                break;
            }

            _array[k] = c;
            k = child;
        }

        _array[k] = x;
    }

    /// 
    /// 容量扩充
    /// 
    /// 
    private void GrowCapacity(int minCapacity)
    {
        var oldCapacity = _array.Length;
        // double size if small, else grow 50%
        var newCapacity = oldCapacity + (oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1);
        newCapacity = Math.Max(newCapacity, minCapacity);

        var newArray = new T[newCapacity];
        Array.Copy(_array, newArray, oldCapacity);
        _array = newArray;
    }

    public IEnumerator GetEnumerator()
    {
        return new Enumerator(this);
    }

    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }

    public struct Enumerator : IEnumerator
    {
        private readonly PriorityQueue _queue;
        private int _index;
        private readonly int _version;
        private readonly int _size;
        private T _current;

        public Enumerator(PriorityQueue queue)
        {
            _queue = queue;
            _index = 0;
            _version = queue._version;
            _current = default;
            _size = queue.Count;
        }

        public bool MoveNext()
        {
            var localQueue = _queue;
            if (localQueue._version == _version && _index < _size)
            {
                _current = localQueue._array[_index];
                _index++;
                return true;
            }
            if (_version != localQueue._version)
            {
                throw new InvalidOperationException();
            }

            _index = _size + 1;
            _current = default;
            return false;
        }

        public void Reset()
        {
            _index = 0;
            _current = default;
        }

        public T Current => _current;

        object IEnumerator.Current => Current;

        public void Dispose()
        {
        }
    }
}

三、实现定时系统

定时系统基本按照最开始的流程图就可以实现,这里给出最主要的添加任务和主循环实现

private readonly PriorityQueue _taskList;

/// 
/// 添加定时任务
/// 
/// 
public void Schedule(SimpleTimerTask task)
{
    lock (_lockObj)
    {
        _taskList.Enqueue(task);
    }
    TimerLogger.Log.Info("{0}#add#{1}#{2}#{3}", "simple", task.TaskId, task.Name, task.ExecutionTime);
}

void MainLoop()
{
    if (_taskList.Count <= 0)
    {
        return;
    }

    var currTime = TimeUtil.GetTimestamp(TimeUtil.FastDateTimeNow);
    lock (_lockObj)
    {
        if (_taskList.Count > 0)
        {
            while (_taskList.TryPeek(out var task))
            {
                if (task.ExecutionTime <= currTime)
                {
                    _taskList.Dequeue();
                    if (task.CanExecute())
                    {
                        // 执行任务
                        Task.Factory.StartNew(task.GetTask(), CancellationToken.None, TaskCreationOptions.None, GetTaskScheduler(task.TaskId));
                    }
                }
                else
                {
                    break;
                }
            }
        }
    }
}
  • MainLoop 是一个被线程周期性调用的函数,调度代码如下:
public static (Task, CancellationTokenSource) CreateLoopTask(Action action, int interval = 200)
{
    void Function()
    {
        while (true)
        {
            try
            {
                action();
            }
            catch (Exception e)
            {
                Log.LogFactory.Default.Error(e, "loop task error");
            }

            try
            {
                System.Threading.Thread.Sleep(interval);
            }
            catch
            {
                // ignored
            }
        }
    }

    var cts = new CancellationTokenSource();
    // return (Task.Run(Function, cts.Token), cts);
    return (Task.Factory.StartNew(Function, cts.Token, TaskCreationOptions.LongRunning, FixedTaskScheduler.Current), cts);
}

结语

定时任务系统的基本原理是比较简单的,但也是十分可靠的!对于游戏来说,里面的时间系统还可以基于Mock,可以被加速,有很大的想象空间

你可能感兴趣的:(自定义一个适合游戏的定时任务框架)