神经网络基础-神经网络补充概念-18-多个样本的向量化

概念

多个样本的向量化通常涉及将一组样本数据组织成矩阵形式,其中每一行代表一个样本,每一列代表样本的特征。这种向量化可以使你更有效地处理和操作多个样本,特别是在机器学习和数据分析中。

代码实现

import numpy as np

# 多个样本的数据
samples = np.array([[1, 2, 3],
                    [4, 5, 6],
                    [7, 8, 9]])

# 向量化为矩阵
matrix = samples

print("原始样本数据:")
print(samples)

print("\n向量化后的矩阵:")
print(matrix)


你可能感兴趣的:(神经网络补充,神经网络,神经网络,人工智能,深度学习)