【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第1张图片

Digraph

1. Edges all directed

2. A fundamental issue with directed graphs is the notion of reachability, which deals with determining where we can get to in a directed graph.

 3. Given two vertices u and v of a digraph G, we say that u reaches v (or v is reachable from u) if G has a directed path from u to v.

4. Digraph is Strongly connected if we have that u reaches v, and v reaches u.

5. Acyclic if it has no directed cycles.

Weight digraph

1. A weighted graph is a graph that has a numerical label w(e) associated with each edge e, called the weight of e.

Network Flow - The basics 

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第2张图片

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第3张图片

Ford-Fulkerson algorithm

The Ford-Fulkerson algorithm depends on three important ideas :

1. residual networks

2. augmenting paths

3. cuts

These three ideas are essential for the important Max-Flow/Min-Cut theorem.

Residual Networks 

1. A residual network consists of edges that can admit more net flow.

2. Given the flflow network G, and a flflow f in that network, we defifine the residual network Gf  (So this depends upon the given flflow f.)

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第4张图片

Augmenting Paths 

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第5张图片

Update the flow

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第6张图片  

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第7张图片

Cuts in Network

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第8张图片

其实就是一次一次的列举 找出minimum capacity of the cuts

Max-Flow/Min-Cut Theorem

The maximum flow is a network is equal to capacity of a minimum cut in the network

Complexity of the Ford-Fulkerson algorithm

。。。。有点难

不是很懂

Bipartite graphs

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第9张图片

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第10张图片

Matching

A matching is a subset of the edges of a bipartite graph where each vertex appears in at most one edge (i.e. edges in the matching share no common endpoints). 一个顶点最多使用一次【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第11张图片

1. determining the size of the largest matching in a bipartite graph

2. To use the algorithm, 我们需要先处理一下bipartite graph :a : adding two new vertices, a source vertex s and a sink vertex t  b: Join all vertices in X to s and all vertices in Y to t. Direct all edges from s to X, from X to Y, and from Y to t. c : Give each edge a capacity of 1.

【COMP282 LEC8 The Maximum Flow ProblemBipartite Matchings】_第12张图片

 

 

你可能感兴趣的:(学习)