- Xinference如何注册自定义模型
玩人工智能的辣条哥
人工智能AI大模型Xinference
环境:Xinference问题描述:Xinference如何注册自定义模型解决方案:1.写个model_config.json,内容如下{"version":1,"context_length":2048,"model_name":"custom-llama-3","model_lang":["en","ch"],"model_ability":["generate","chat"],"model
- [AI资讯·0605] GLM-4系列开源模型,OpenAI安全疑云,ARM推出终端计算子系统,猿辅导大模型备案……
老牛同学
AI人工智能ai大模型AI资讯
AI资讯1毛钱1百万token,写2遍红楼梦!国产大模型下一步还想卷什么?AI「末日」突然来临,公司同事集体变蠢!只因四大聊天机器人同时宕机OpenAI员工们开始反抗了!AI手机PC大爆发,Arm从软硬件到生态发力,打造行业AI百宝箱GLM-4开源版本:超越Llama3,多模态比肩GPT4V,MaaS平台也大升级猿辅导竟然是一家AI公司?大模型全家桶曝光|甲子光年FineChatBI,帆软在AI方
- 新款 GPT-4o mini、Llama 3.1、Mistral NeMo 12B 和其他 GenAI 趋势指南
数云界
llama
作者使用GPT-4o创建的图像,用于表示不同的模型欢迎来到雲闪世界。自2022年11月推出ChatGPT以来,几乎每周都会出现新的模型、新颖的提示方法、创新的代理框架或其他令人兴奋的GenAI突破。2024年7月也不例外:仅在本月,我们就看到了MistralCodestralMamba、MistralNeMo12B、GPT-4omini和Llama3.1等的发布。这些模型在推理速度、推理能力、编码
- 大模型实战—Ollama 本地部署大模型
猫猫姐
大模型大模型
Ollama本地部署大模型在当今的科技时代,AI已经成为许多领域的关键技术。AI的应用范围广泛,从自动驾驶汽车到语音助手,再到智能家居系统,都有着AI的身影,而随着Facebook开源LLama2更让越来越多的人接触到了开源大模型。今天我们推荐的是一条命令快速在本地运行大模型,在GitHub超过22KStar的开源项目:ollama随着围绕着Ollama的生态走向前台,更多用户也可以方便地在自己电
- 【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人
寻道AI小兵
AI大模型Qwen系列探索实践人工智能AIGC语言模型AI编程Qwen
系列篇章No.文章1【Qwen部署实战】探索Qwen-7B-Chat:阿里云大型语言模型的对话实践2【Qwen2部署实战】Qwen2初体验:用Transformers打造智能聊天机器人3【Qwen2部署实战】探索Qwen2-7B:通过FastApi框架实现API的部署与调用4【Qwen2部署实战】Ollama上的Qwen2-7B:一键部署大型语言模型指南5【Qwen2部署实战】llama.cpp:
- 快速上手指南:在Windows系统中下载Ollama,一键启动大模型体验!
再不会AI就不礼貌了
人工智能学习方法大数据llama语言模型
1.下载ollama官网下载安装:ollama.com2.拉取大模型llama3.1终端中输入ollamapullllama3.1,等待安装3.运行llama3.1ollamarunllama3.1接下来就可以和模型对话了退出/bye运行/?查看更多聊天中命令其他ollamagithub:github.com/ollama/olla…常用命令删除模型:ollamarmollamarmllama3.
- 反射是一个新的AI模型,可以在一台性能良好的笔记本上运行并在测试中击败GPT-4o
AI甲子光年
人工智能
开源AI模型领域又迎来一位新的重量级选手。由初创公司HyperWrite开发的Reflection70B,凭借其创新的“反思”机制,正引发广泛关注,这一机制旨在解决大型语言模型的核心问题——幻觉。在早期的基准测试中,这个升级版的Meta的Llama3.1-70BInstruct架构已经超越了OpenAI的GPT-4o。Reflection70B引入了一种创新方法来增强语言模型的推理能力和准确性。通
- LLAMA Factory: 简洁高效的大语言模型训练平台
俞纬鉴Joshua
LLAMAFactory:简洁高效的大语言模型训练平台LLaMA-Factory易于使用的LLM微调框架(LLaMA,BLOOM,Mistral,百川,Qwen,ChatGLM)。项目地址:https://gitcode.com/gh_mirrors/ll/LLaMA-Factory项目介绍LLaMAFactory定位为一款简洁、高效的大规模语言模型训练和微调平台。其设计初衷在于让用户无需编码即可
- llama.cpp本地部署大模型
张兆坤的那些事
大模型llama.cpp
llama.cpp是一个C++库,用于简化LLM推理的设置,它使得在本地机器上运行大模型(GGUF格式)成为可能。官网:https://github.com/ggerganov/llama.cpp模型库:https://huggingface.co/HF-Mirror魔搭社区安装并且使用llama.cpp0.安装llama.cpp官方文档:https://github.com/ggerganov/
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- Langchain + Ollama
AI工程仔
LLM&AIGClangchainollamarag
文章目录方式一:Ollama运行起来后,使用langchain加载fromlangchain.llmsimportOllamaollama=Ollama(base_url='http://localhost:11434',model="llama2")print(ollama("whyistheskyblue"))方式二:使用langchain_community1、下载Ollama:https:
- 超越传统:Reflection 70B如何革新AI语言处理
黑金IT
人工智能AI编程
Reflection70B:AI语言模型的新里程碑AI领域迎来了革命性的变革,HyperWrite公司推出的开源AI大模型Reflection70B,以其卓越的性能在多个基准测试中超越了GPT-4o和Llama3.1。这款基于Meta的Llama3.170BInstruct构建的模型,采用了先进的“Reflection-Tuning”技术,能够在最终确定回答前检测并纠正自身的错误,显著提高了输出的
- llama_index 官方文档阅读笔记 (持续更新版)
皮卡丘ZPC
AIGCforGPT评分体系构架笔记llama人工智能语言模型
llama0.10.17版本阅读链接:LlamaIndexv0.10.17LlamaIndex是一个基于LLM的应用程序的数据框架,它受益于上下文增强。这种LLM系统被称为RAG系统,代表“检索-增强生成”。LlamaIndex提供了必要的抽象,以便更轻松地摄取、构建和访问私有或特定于域的数据,以便将这些数据安全可靠地注入LLM,以实现更准确的文本生成。为什么选择上下文增强?LLM的局限LLM在人
- 利用 Llama-Index为你的应用程序注入智能搜索
黑金IT
llamapython向量数据
Llama-Index是一个基于大型语言模型的索引和检索工具,它允许用户快速检索和使用大量文本数据。要安装Llama-Index,你需要确保你的Python环境已经设置好,并且你有足够的系统资源来运行它,因为它可能需要较大的内存和计算能力。安装Llama-Index的一般步骤:确保你已经安装了Python和pip。你可以通过运行以下命令来检查Python版本:pipinstallllama-ind
- 从零搭建一个可离线使用的可实时更新扩展信息的智能问答系统 llamaindex&LLama3大模型&RAG
千年奇葩
AI人工智能aillama人工智能llamafactory大模型
之前对一件事很好奇,为什么去年训练的大模型可以回答今天的新闻内容。答案是使用了知识扩展系统。基本原理是把参考答案和问题一同提给大模型,给他充分的参考信息做回复编辑。本文教你完成离线版本的智能问答系统搭建。有问题请直接留言最近在疯狂找下家,本人精通图形渲染和ai,求捞啊!基本架构图讲一下基本运行流程:人工准备数据转为嵌入向量存入数据库并生成索引用户提问流程:用户输入问题在索引数据库中查询匹配度较高的
- 大模型入门(一)
pit_man
人工智能大模型
大模型入门(一)一、LLaMa模型介绍1)Pre-normalization2)SwiGLU激活函数3)RoPE旋转位置编码二、Alpaca模型介绍三、Vicuna模型介绍大模型入门(一)——LLaMa/Alpaca/VicunaLLaMa模型是Meta开源的大模型,模型参数从7B到65B不等,LLaMa-7B在大多数基准测试上超过了GPT3-173B,而LLaMa-65B和Chinchilla-
- 微软开源 Phi-3.5 视觉模型
三花AI
三花AImicrosoft人工智能深度学习
微软刚刚发布了Phi3.5系列模型,一个小型模型("Mini")、一个混合模型("MoE")和一个视觉模型。下面是关键总结:Phi3.5Mini:3.8B参数,性能超过Llama3.1(8B)和Mistral7B,接近MistralNeMo12B。支持多种语言,使用了包含32,000个词汇的分词器。512个H100GPU,3.4万亿个tokens训练了10天。Phi3.5MoE:16x3.8B参数
- 基于Llama 3搭建中文版(Llama3-Chinese-Chat)大模型对话聊天机器人
老牛同学
AI专业技术llama机器人人工智能aiOllama
前面两篇博文,我们分别在个人笔记本电脑部署了Llama38B参数大模型,并使用Ollama搭建了基于Web可视化对话聊天机器人,可以在自己电脑上愉快的与Llama大模型Web机器人对话聊天了。但在使用过程中,笔者发现Llama大模型经常出现中文问题英文回答的问题,需要使用中文回答等提示词告诉大模型用中文回答,体验还不是最好的。今天,本博文就来解决这个问题,让我们有个中文版的Llama3Web对话机
- LLM资料大全:文本多模态大模型、垂直领域微调模型、STF数据集、训练微调部署框架、提示词工程等
汀、人工智能
LLM工业级落地实践LLM技术汇总人工智能自然语言处理Prompt工程AI大模型SFTvLLMLLM
LLM资料大全:文本多模态大模型、垂直领域微调模型、STF数据集、训练微调部署框架、提示词工程等自ChatGPT为代表的大语言模型(LargeLanguageModel,LLM)出现以后,由于其惊人的类通用人工智能(AGI)的能力,掀起了新一轮自然语言处理领域的研究和应用的浪潮。尤其是以ChatGLM、LLaMA等平民玩家都能跑起来的较小规模的LLM开源之后,业界涌现了非常多基于LLM的二次微调或
- AI多模态实战教程:面壁智能MiniCPM-V多模态大模型问答交互、llama.cpp模型量化和推理
AIGCmagic社区
AI多模态人工智能交互llama
一、项目简介MiniCPM-V系列是专为视觉-语⾔理解设计的多模态⼤型语⾔模型(MLLMs),提供⾼质量的⽂本输出,已发布4个版本。1.1主要模型及特性(1)MiniCPM-Llama3-V2.5:参数规模:8B性能:超越GPT-4V-1106、GeminiPro、Qwen-VL-Max和Claude3,⽀持30+种语⾔,多模态对话,增强OCR和指令跟随能⼒。部署:量化、编译优化,可⾼效部署于端侧
- 大模型--个人学习心得
挚爱清&虚
人工智能
大模型LLM定义大模型LLM,全称LargeLanguageModel,即大型语言模型LLM是一种基于Transformer架构模型,它通过驯良大量文本数据,学习语言的语法、语义和上下文信息,从而能够对自然语言文本进行建模这种模型在自然语言处理(NLP)领域具有广泛应用常见的13个大模型BERT、GPT系列、T5、Meta的Llama系列、华为盘古模型、阿里巴巴通义大模型、科大讯飞星火大模型、百度
- LLM大模型落地-从理论到实践
hhaiming_
语言模型人工智能ai深度学习
简述按个人偏好和目标总结了学习目标和路径(可按需学习),后续将陆续整理出相应学习资料和资源。学习目标熟悉主流LLM(Llama,ChatGLM,Qwen)的技术架构和技术细节;有实际应用RAG、PEFT和SFT的项目经验较强的NLP基础,熟悉BERT、T5、Transformer和GPT的实现和差异,能快速掌握业界进展,有对话系统相关研发经验掌握TensorRT-LLM、vLLM等主流推理加速框架
- 整理了上百个开源中文大语言模型,涵盖模型、应用、数据集、微调、部署、评测_基于大语言模型的网络自动配置平台的设计与开发
AI大模型-搬运工
开源语言模型网络AI大模型自然语言处理LLM人工智能
自ChatGPT为代表的大语言模型(LargeLanguageModel,LLM)出现以后,由于其惊人的类通用人工智能(AGI)的能力,掀起了新一轮自然语言处理领域的研究和应用的浪潮。尤其是以ChatGLM、LLaMA等平民玩家都能跑起来的较小规模的LLM开源之后,业界涌现了非常多基于LLM的二次微调或应用的案例。本项目旨在收集和梳理中文LLM相关的开源模型、应用、数据集及教程等资料,目前收录的资
- llama factory微调时出现x86_64-conda-linux-gnu/bin/ld: cannot find -lcurand: No such file or directory解决方案
爱编程的喵喵
Python基础课程pythonllamafactorycurand解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了llamafactory微调时出现x
- 本地电脑大模型系列之 20 离线 AI:使用 Ollama+llama3+privateGPT+Langchain+GPT4ALL+ChromaDB 与 Pdf、Excel、CSV、PPTX、PPT、
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能langchainpdf
简介Ollama在Mac/Windows/Ubuntu上与llama3一起运行MAC至少需要8GBRAM,Ubuntu和Windows至少需要16GBRAMpython3.10和git系列文章《本地电脑搭建StreamDiffusion:用眼睛见证实时人工智能创意利用交互式高速扩散技术彻底改变图像生成》权重1,本地类《使用本地Llama2模型和向量数据库建立私有检索增强生成(RAG)系统LangC
- LLM-项目详解(一):Chinese-LLaMA-Alpaca【transformers/models/llama/modeling_llama.py文件】
u013250861
#LLM/经典模型llama
site-packages/transformers/models/llama/modeling_llama.py#coding=utf-8#Copyright2022EleutherAIandtheHuggingFaceInc.team.Allrightsreserved.##ThiscodeisbasedonEleutherAI'sGPT-NeoXlibraryandtheGPT-NeoX#a
- LLM - 从头实现 LLaMA3 网络与推理流程 (RMS | RoPE | GQA | SwiGLU)
CarolineSpike
大模型(LLM)Llama3RoPEBPERMS正则化分组查询注意力SwiGLU从头实现
欢迎关注我的CSDN:https://spike.blog.csdn.net/本文地址:https://spike.blog.csdn.net/article/details/141462669免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。LLaMA3是Meta的最新大语言模型,在整体网络设计进行多项升级,显著提升了模型的性能和效率,重要的改进,如下:词汇量增加至1
- “全面解析!大模型面试宝典(含精选答案与策略)“
AGI-老冉
人工智能chatgptagi学习知识图谱ai程序员
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?2.prefixLM和causalLM区别是什么?3.涌现能力是啥原因?4.大模型LLM的架构介绍?大模型(LLMs)进阶面1.llama输入句子长度理论上可以无限长吗?1.什么是LLMs复读机问题?2.为什么会出现LLMs复读机问题?3.如何缓解LLMs复读机问题?1.LLMs复读机问题2.llama系列问题3.什么情况用Bert模型,什
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 【大模型】大模型 CPU 推理之 llama.cpp
szZack
大语言模型人工智能大模型人工智能llama.cpp
【大模型】大模型CPU推理之llama.cppllama.cpp安装llama.cppMemory/DiskRequirementsQuantization测试推理下载模型测试参考llama.cpp描述Themaingoalofllama.cppistoenableLLMinferencewithminimalsetupandstate-of-the-artperformanceonawideva
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/