题目链接:http://115.28.76.232/problem?pid=1075
题意:定义一个f(n)函数,f(n) = a * f(n - 1) + b * f(n - 2), f(1) = c, f(2) = d.问f(n)在模1000000007情况下的最小循环节。即求最小的m,使对任意的n有f(n) % 1000000007 = f(n + m) % 1000000007.
思路:
i64 p[] = {2, 3, 7, 109, 167, 500000003}; i64 cnt[] = {4, 2, 1, 2, 1, 1 }; i64 a,b,c,d; int judge(i64 x) { if(myPow(x,(mod-1)>>1,mod)==1) return 1; return -1; } int ok(i64 n) { Matrix A; A.init(0); A.a[0][0]=a; A.a[0][1]=b; A.a[1][0]=1; A.a[1][1]=0; A=A.Pow(n); i64 cc=(A.a[0][0]*c%mod+A.a[0][1]*d%mod)%mod; i64 dd=(A.a[1][0]*c%mod+A.a[1][1]*d%mod)%mod; return cc==c&&dd==d; } i64 ans; void DFS(i64 cur,int dep) { if(dep==6) { if(ok(cur)&&(ans==-1||cur<ans)) ans=cur; return; } int i; for(i=0;i<=cnt[dep];i++) { DFS(cur,dep+1); cur*=p[dep]; } } int main() { while(cin>>a>>b>>c>>d) { ans=-1; if(judge(a*a+4*b)==1) { if(ok(1)) ans=1; else if(ok(2)) ans=2; else if(ok(500000003)) ans=500000003; else if(ok(mod-1)) ans=mod-1; } else { DFS(1,0); } printf("%lld\n",ans); } }