数学建模(四)整数规划—匈牙利算法

目录

一、0-1型整数规划问题

1.1 案例

1.2 指派问题的标准形式

2.2 非标准形式的指派问题

二、指派问题的匈牙利解法 

2.1 匈牙利解法的一般步骤

2.2 匈牙利解法的实例

2.3 代码实现


一、0-1型整数规划问题

1.1 案例

投资问题:

有600万元投资5个项目,收益如表,求利润最大的方案?

数学建模(四)整数规划—匈牙利算法_第1张图片

设置决策变量:

模型:

数学建模(四)整数规划—匈牙利算法_第2张图片

指派问题:

甲乙丙丁四个人,ABCD四项工作,要求每人只能做一项工作,每项工作只由一人完成,问如何指派总时间最短?

数学建模(四)整数规划—匈牙利算法_第3张图片

设置决策变量:

数学建模(四)整数规划—匈牙利算法_第4张图片

模型:

约束条件:

数学建模(四)整数规划—匈牙利算法_第5张图片

1.2 指派问题的标准形式

标准的指派问题

有n个人和n项工作,已知第i个人做第j项工作的代价为cj(i,j=1,…..,n),要求每项工作只能交与其中一人完成,每个人只能完成其中一项工作,问如何分配可使总代价最少?

指派问题标准求解形式

(1) 指派问题的系数矩阵

数学建模(四)整数规划—匈牙利算法_第6张图片

(2)决策变量的设置

(3)指派问题的解矩阵

数学建模(四)整数规划—匈牙利算法_第7张图片

 指派问题的可行解中,每行每列有且仅有一个1。

(4)标准模型

数学建模(四)整数规划—匈牙利算法_第8张图片

2.2 非标准形式的指派问题

(1)最大化指派问题

例如:求利润,只需找出最大元素,令最大元素减去所有元素,构建一个新的系数矩阵即可。

C=(c_{ij})_{n \times n} 中最大元素为m,令 B=(b_{ij})_{n \times n}=(m-c_{ij})_{n \times n}

(2)人数和工作数不等

人少工作多:添加虚拟的 “人”,代价都为0

人多工作少:添加虚拟的工作,代价都为0

(3)一个人可做多件工作
该人可化为几个相同的 “人”。

(4)某工作一定不能由某人做
该人做该工作的相应代价取足够大M。例如,将某人做某工作代价设为负值。

二、指派问题的匈牙利解法 

匈牙利法是一种求解指派问题的简便解法,它利用了矩阵中0元素的定理。若从系数矩阵的一行(列)各元素中分别减去该行(列)的最小元素,得到新矩阵。以新矩阵为系数矩阵求得的最优解和用原矩阵求得的最优解相同

2.1 匈牙利解法的一般步骤

第一步变换指派问题的系数(也称效率)矩阵(c_{ij})为(b_{ij}),使在(b_{ij})的各行各列中都出现0元素,即

  • (1) 从矩阵(c_{ij})的每行元素都减去该行的最小元素
  • (2) 再从所得新系数矩阵的每列元素中减去该列的最小元素

第二步:进行试指派,以寻求最优解。

在(b_{ij})中找尽可能多的独立0元素(即行和列中只有这一个0元素),若能找出n个独立0元素,就以这n个独立0元素对应解矩阵(x_{ij})中的元素为1,其余为0,这就得到最优解。找独立0元素,常用的步骤为:

  • (1) 从只有一个0元素的行开始,给这个0元素加圈,记作\circledcirc,然后划去\circledcirc所在列的其它0元素,记作。这表示这列所代表的任务已指派完,不必再考虑别人了。
  • (2) 给只有一个0元素的列中的0元素加圈,记作\circledcirc,然后划去\circledcirc所在行的0元素,记作
  • (3) 反复进行(1),(2)两步,直到尽可能多的0元素都被圈出和划掉为止。
  • (4) 若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,则从剩有0元素最少的行(列)开始,比较这行各0元素所在列中0元素的数目,选择0元素少的那列的这个0元素加圈。然后划掉同行同列的其它0元素。可反复进行,直到所有0元素都已圈出和划掉为止
  • (5) 若\circledcirc元素的数目m等于矩阵的阶数n,那么这指派问题的最优解已得到。若m

第三步:作最少的直线覆盖所有0元素。

  • (1) 对没有\circledcirc打√号;
  • (2) 对已打√号的行中所有含元素的打√号。
  • (3) 再对打有√号的列中含\circledcirc元素的打√号。
  • (4) 重复(2),(3)直到得不出新的打√号的行、列为止。
  • (5) 对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖所有0元素的最少直线数 ll 应等于m,转第四步。若不相等,说明试指派过程有误,回到第二步(4)。

第四步:变换矩阵(b_{ij})以增加0元素。

在没有被直线覆盖的所有元素中找出最小元素,然后打√各行都减去这最小元素。打√各列都加上这最小元素(以保证系数矩阵中不出现负元素)。新系数矩阵的最优解和原问题仍相同。转回第二步,直到找出最优解。

2.2 匈牙利解法的实例

 甲乙丙丁四人要完成四项工作A、B、C、D,每人只能完成一项工作,要求完成总时间最短。

数学建模(四)整数规划—匈牙利算法_第9张图片

匈牙利解法

第一步:减去最小值。

数学建模(四)整数规划—匈牙利算法_第10张图片

第二步:加圈和划掉,比较圈数是否等于矩阵的阶数。

数学建模(四)整数规划—匈牙利算法_第11张图片

等于,则输出最优值, 否则,转到第三步重整矩阵。

2.3 代码实现

c=[3 8 2 10 3;8 7 2 9 7;6 4 2 7 5; 8 4 2 3 5;9 10 6 9 10];%系数矩阵
 
c=c(:);    %把矩阵c转化为向量 

a=zeros(10,25);
 
for i=1:5   % 实现循环运算
a(i,(i-1)*5+1:5*i)=1; 
a(5+i,i:5:25)=1;
end         % 此循环把指派问题转换为线性规划问题
 
b=ones(10,1); 
 
[x,y]=linprog(c,[],[],a,b,zeros(25,1),ones(25,1));

X=reshape(x,5,5)

opt=y

输出

数学建模(四)整数规划—匈牙利算法_第12张图片

你可能感兴趣的:(数学建模,数学建模,匈牙利算法,指派规划)