- 基于大语言模型构建本地个人AI助理
由数入道
人工智能语言模型自然语言处理
在构建本地专属的个人AI助理时,我们需要处理多个方面的技术需求,确保其在多模态数据处理、实时查询、灵活推理、知识图谱更新等方面具备高效性、实时性和可扩展性。以下探讨如何基于大语言模型构建一个具备全面功能的个人AI助理,涵盖知识库管理、动态推理、用户交互、实时学习和跨模态集成等关键技术。一、技术设计总体架构1.目标与需求个性化AI助理:构建一个本地专属AI助理,能够处理多种输入格式(文本、图像、音频
- 计算机网络(北邮信息工程期末速通)
arbelite
计算机网络
计算机网络计算机网络概述⭐计算机网络的组成和功能计算机网络的组成:从组成看,计算机网络主要由三大部分组成:硬件(hardware),软件(software),协议(protocol)。从工作方式看:可分为边缘部分(edgepart)和核心部分(corepart)。从功能组成来看:计算机网络由通信子网(CommunicationSubnetwork)和资源子网(ResourceSubnetwork)
- 浅析AI大模型现状及其应用,零基础入门到精通,收藏这篇就够了
程序员_大白
互联网程序员大模型人工智能数据挖掘大模型
随着人工智能技术的迅猛发展,AI大模型已经成为全球科技竞争的焦点,展现出巨大的发展潜力和广阔的应用前景。AI大模型的应用落地正引发行业关注,技术进步正促使AI大模型的应用逐步从云端向终端设备延伸,从通用模型向针对特定行业的定制化解决方案转变,其商业潜力和对行业的影响不断增强。与此同时,国内外企业在大模型领域的竞争日趋激烈。AI大模型蓬勃发展AI大模型主要特征AI大模型具有泛化性(知识迁移到新领域)
- 速看:华为云云原生实践与应用大阅兵
CSDN云原生
分布式java编程语言大数据人工智能
出品|CSDN云原生2022年6月9日,CSDN云原生系列在线峰会第8期“华为云云原生实践与应用峰会”盛大举行,本期峰会出品人、中信银行技术专家、华为云MVP马超携手华为云数字化平台技术专家高红霞、边缘云创新实验室主任工程师郑子木、微服务产品经理丛琳琳、应用魔方AppCube产品经理邢博洋,全面分享了华为云的云原生应用实践。下面先简单回顾本期峰会的内容。演讲视频、完整文章将在本公众号陆续发布,敬请
- 2021 年 GitHub 上十大最火 Python 项目,看完之后我裂开了
酔清风
pythongithubpython开发语言
GitHub作为程序员每天必逛的网站之一,上面有着太多优秀的开源项目,今天派森酱就带大家来梳理下在过去的一年里,GitHub上最火的Python项目Top10。数据获取如果你留心看过GitHub的文档的话,你就会知道关于GitHub上的大部分数据,GitHub官方都是提供了接口了的。比如我们今天要获取的数据就可以从下面这个接口拿到。https://api.github.com/search/rep
- threejs——无人机概念切割效果
孙华鹏
无人机cocos2d游戏引擎
主要技术采用着色器的切割渲染,和之前写的风车可视化的文章不同,这次的切割效果是在着色器的基础上实现的,并新增了很多可调节的变量,兄弟们,走曲儿~线上演示地址,点击体验源码下载地址,点击下载正文从图中大概可以看出以下信息,一个由线组成的无人机模型,一个由粒子组成的无人机模型,那么这些粒子、线都是从一个无人机的gltf模型中提取出来的,无人机模型由很多个小的Mesh组成的一个大的group,那么为了着
- 跨境电商都爱的AI图片视频翻译工具,究竟是啥
ssk521125
人工智能大数据ai
家人们,做跨境电商的都知道,语言真的是一道大坎!要把咱的商品图文、宣传视频推向全球市场,不懂当地语言可不行。找人工翻译吧,价格贵不说,效率还不高。自己用那些免费的基础翻译软件,翻译出来的内容要么生硬,要么根本不准确,简直没法用。就在大家为这个问题头疼的时候,一款神秘的翻译工具在跨境电商圈里火了起来,好多跨境电商从业者都对它赞不绝口,到底是啥工具这么厉害呢?今天我就给大家好好扒一扒!风车AI翻译官网
- Three.js学习笔记(一)
hzxwonder
three.jswebglthree.js
Three.js学习笔记(一)1.四大组建1.场景任何要显示的东西,放在场景的任何位置一个页面可以有多个场景实现方式THREE.Scene=function()2.相机浏览器中所能看到的东西,就是由相机拍摄出来。即将相机能看到的内容显示在浏览器画面上分类1.透视相机近大远小+灭点2.正投影相机远处和近处一样大,也称正交相机参数THREE.PerspectiveCamera=function(fov
- 基于ROS的相机和激光雷达离线自动标定
AUBarryRobot
传感器标定数码相机
目录前言理论背景相机和激光雷达标定原理实现思路Reference前言因为本人实际工作中在做视觉和雷达的相关融合工作,所以相机和雷达的传感器之间的位姿RT矩阵则是要首先进行解决的。标定对大部分人来说都很头疼,抵触,在网上进行调研也没有什么太好的方法,或者别人分享的项目和自己的相差很大,根本不适用或者不好复现。而且可能全程比较繁琐,需要手动进行各种操作,运行一大堆程序。我的联合标定程序,只需要采集对应
- P8612 [蓝桥杯 2014 省 AB] 地宫取宝
今天_也很困
蓝桥杯算法职场和发展
题目描述X国王有一个地宫宝库。是n×m个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。地宫的入口在左上角,出口在右下角。小明被带到地宫的入口,国王要求他只能向右或向下行走。走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。请你帮小明算一算,在给定的局面下,他有多少
- Golang 进阶4—— 网络编程
小吴同学(wlx)
golang
Golang进阶4——网络编程注意,该文档只适合有编程基础的同学,这里的go教程只给出有区别的知识点网络编程:把分布在不同地理区域的计算机与专门的外部设备用通信线路互连成一个规模大,功能强的网络系统,从而使众多的计算机可以方便的相互通信、共享硬件、软件等资源1.1客户端//客户端import("fmt""net"//所有网络编程都在这个包下)funcmain(){//打印fmt.Println("
- JavaScript 进阶之路:探索高级特性和最佳实践
不在··
原型模式
面向对象的三大特征封装继承多态构造函数什么是构造函数通过new关键字调用一个函数的时候,这个函数就是构造函数。构造函数和普通函数的区别调用方式不同普通函数只用函数名调用构造函数通过new关键字调用返回值不同普通函数的返回值是函数体内return的结果构造函数的返回值是new关键字生成的对象JSPrototype原型对象所有的函数都有一个原型对象Prototype,并且只有函数才拥有原型对象Prot
- 设计模式Python版 抽象工厂模式
小王子1024
设计模式Python版设计模式python抽象工厂模式
文章目录前言一、抽象工厂模式二、抽象工厂模式示例三、抽象工厂模式在Django框架中的应用前言GOF设计模式分三大类:创建型模式:关注对象的创建过程,包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式:关注类和对象之间的组合,包括适配器模式、桥接模式、组合模式、装饰模式、外观模式、享元模式和代理模式。行为型模式:关注对象之间的交互,包括职责链模式、命令模式、解
- ChatGPT是强人工智能吗?
呵呵爱吃菜
chatgpt人工智能
ChatGPT是强人工智能吗?本文从人工智能发展的三个阶段的角度,分析当前强大的AI大模型所处的阶段,并通过对比各阶段的定义,明确各阶段的特点和未来发展方向;NarrowAI(弱人工智能)、AGI(人工通用智能)和ASI(人工超级智能)代表了人工智能发展的三个不同阶段,它们在智能水平、任务范围和应用场景上存在显著差异。以下是它们的总结与对比:1.定义与特点类型NarrowAI(弱人工智能)AGI(
- 蓝牙LE Audio的三大改进
Lenzetech
蓝牙技术资讯蓝牙
多流音频的优势AppleAirPods的最大功能之一是,每个Pod都从配对的iOS设备接收单独的信号。通常,无线耳塞仅将一个芽与输出设备配对,然后将信号投射到另一个芽。这会给整体声音带来延迟,并降低声音质量。蓝牙LE的多流音频将允许任何受支持的设备连接到多个设备,这意味着可以将两个耳塞分别配对并获得真实的立体声。这为真正的无线耳机打开了大门,该无线耳机可用于计时至关重要的环境中,例如竞争性游戏。L
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 【大模型】ChatGPT 创作各类高质量文案使用详解
小码农叔叔
AI大模型实战与应用ChatGPT文案创作ChatGPT文案创作详解ChatGPT文案创作技巧ChatGPT数据分析ChatGPT生成PPT
目录一、前言二、ChatGPT文案创作的优势三、ChatGPT各类文案创作操作实战3.1ChatGPT创作产品文案3.1.1ChatGPT创作产品文案基本思路3.1.2ChatGPT创作产品文案案例一3.1.2.1操作过程3.1.3ChatGPT创作产品文案案例二3.2ChatGPT创作视频脚本3.2.1ChatGPT创作视频脚本基本思路3.2.2ChatGPT创作视频脚本案例一3.3ChatGP
- GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系
surfirst
LLMai语言模型chatgpt
简介近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4是OpenAI推出的新一代大模型,而GPT-4O和GPT-4O-mini是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较GPT-4、GPT-4O和GPT-4O-mini的区别与联系,帮助开发者更好地选择适合的模型。GPT-4是OpenAI发布的第四代通用预训练模型,具备强大的生成和理解能力,适
- 讯飞绘镜(ai生成视频)技术浅析(一)
爱研究的小牛
AIGC—视频AIGC—技术综述人工智能AIGC深度学习
讯飞绘镜(也称为星火绘镜)是科大讯飞推出的一款基于人工智能技术的短视频创作平台,旨在通过先进的AI技术简化视频创作流程,让用户能够轻松将创意转化为高质量的视频内容。以下是对讯飞绘镜相关技术、工作原理及具体实现的详细介绍:一、核心技术讯飞绘镜的核心技术主要依托于科大讯飞的星火大模型,并结合了多种先进的AI技术,包括:1.大模型技术:基于讯飞星火大模型,为脚本生成、分镜生成等提供基础能力支持。该模型能
- 第72期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.从孤立指令到互动鼓
- 浅谈redis
zhaoyang9999
redisredis数据库java
redis谈谈你对redis的理解非关系数据库他是单线程的:数据放在内存中,单线程操作效率高(多线程会造成CPU的上下文切换)基于内存操作(周期性的把更新的数据写入到磁盘(RDB)或者把修改操作写入追加的文件记录(AOF))五大基本数据类型strng(最常用)list(列表)底层链表可以用来消息订阅set(集合)hash(哈希hsetkeyfieldvalue)map集合更适合对象的存储Zset(
- 第四届先进材料与机械电子国际学术会议(ICAMM 2024)
2301_79125431
java
第四届先进材料与机械电子国际学术会议(ICAMM2024)【前三届均已见刊EI检索,检索信息均可查询!四大高校联合支持】2024年第四届先进材料与机械电子国际题解|字符串排序-golang最简洁最易懂解法packagemainimport("bufio""fmt&q题解|#数列求和#publicclassMain{publicstaticvoidmain(Str第四届图像处理与智能控制国际学术会议
- Coze,Dify,FastGPT,对比
云连山
AI编程AI编程
在当今AI技术迅速发展的背景下,AIAgent智能体成为了关键领域,Coze、Dify和FastGPT作为其中的佼佼者,各有千秋。平台介绍-FastGPT:由环界云计算公司发起,是基于大语言模型(LLM)的开源知识库问答系统。其亮点是支持Flow可视化工作流编排,在知识问答领域表现出色,拥有庞大用户群体,包括数百家企业付费客户等。网址为https://fastgpt.cn/。-Dify:苏州语灵人
- AI-知识库搭建(一)腾讯云向量数据库使用
CJ点
人工智能GPT向量数据库知识库
一、AI知识库将已知的问答知识,问题和答案转变成向量存储在向量数据库,在查找答案时,输入问题,将问题向量化,匹配向量库的问题,将向量相似度最高的问题筛选出来,将答案提交。二、腾讯云向量数据库向量数据库_大模型知识库_向量数据存储_向量数据检索-腾讯云腾讯云向量数据库(TencentCloudVectorDB)是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。该数据库支持
- 深度学习-97-大语言模型LLM之基于langchain的实体记忆和知识图谱记忆
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1内存记忆Memory1.1记忆系统支持的操作1.2记忆的存储1.3记忆的查询2记忆的应用2.1设置环境变量2.2ConversationEntityMemory实体记忆2.3ConversationKGMemory知识图谱记忆2.3.1创建ConversationKGMemory2.3.2创建ConversationChain2.4ConversationBufferWindowMemo
- AI大模型提示工程(prompt)从入门到精通(非常详细),看这一篇就够了!!!
功城师
人工智能prompt深度学习大模型自然语言处理AI大模型提示词工程
在大模型领域,输入通常被称为“提示词”(prompt),它们是引导LLM(大语言模型)生成相应输出的关键。对于那些能处理多样化任务的LLM来说,一个合理设计的prompt会极大地影响模型的表现。提示工程(promptengineering)正是关于如何为特定任务构建能够充分发挥大模型能力的prompt技巧。本文将深入探讨提示工程,内容涵盖基本原理、一些重要概念以及常用的辅助工具。1.基本原理设计高
- PyQt6医疗多模态大语言模型(MLLM)实用系统框架构建初探(下.代码部分)
Allen_LVyingbo
医疗高效编程研发python健康医疗pythonpyqt语言模型人工智能
医疗MLLM框架编程实现本医疗MLLM框架结合Python与PyQt6构建,旨在实现多模态医疗数据融合分析并提供可视化界面。下面从数据预处理、模型构建与训练、可视化界面开发、模型-界面通信与部署这几个关键部分详细介绍编程实现。6.1数据预处理在医疗MLLM框架中,多模态数据的预处理是非常关键的一步,它直接影响到后续模型的训练效果和性能。我们需要对医学影像、文本数据和音频数据分别进行预处理,以确保数
- 清华大学提出Pointformer:基于Transformer的3D目标检测
Amusi(CVer)
计算机视觉论文速递Transformer3D目标检测深度学习计算机视觉机器学习人工智能自动驾驶
没错!Transformer的"魔爪"已经伸向3D目标检测了。Pointformer:用于3D点云的特征学习backbone,可结合并提高现有的3D点云目标检测网络性能,如VoteNet、PointRCNN和CBGS等。注:文末附【Transformer】和【3D目标检测】学习交流群Transformer最近在3D点云方向应用的工作可以看一下:牛津大学等提出:PointTransformer清华大
- ArkTs模块化语法
秃顶老男孩.
华为harmonyos
1:模块化语法1.1:模块化基本认识模块化将一个大的程序,拆分成若干个小的模块,通过特定的语法,进行任意组合ArkTs中,每个ets文件,都可以看做一个模块1.2:默认导入导出1.2.1:概念指一个模块,只能默认导出一个值或对象,使用时,可以自定义导入名称组件导出一定是默认导出1.2.2:使用步骤当前模块中导出需要使用的地方模块导入//默认导出exprotdefault需要导出的内容//按需导出e
- Windows10环境下使用docker部署Dify
南南的sky
容器运维AIGC
前言最近带教导师让使用dify做一些工程项目,我在此之前没用过dify,也不知道怎么部署,便花了些时间研究了一下,这篇博客的主要目的是记录如何在windows10系统上使用docker部署dify,碰到了哪些问题以及解决方案。什么是DifyDify是一款开源的大语言模型(LLM)应用开发平台。它融合了后端即服务(BackendasService)和LLMOps的理念,使开发者可以快速搭建生产级的生
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,